The Reactions $K^- p \to$ Pseudoscalar Meson $\Lambda(1520)$ at 4.2-{GeV}/$c$

The Amsterdam-CERN-Nijmegen-Oxford collaboration Barlag, S.J.M. ; Blokzijl, R. ; Jongejans, B. ; et al.
Nucl.Phys.B 149 (1979) 220-236, 1979.
Inspire Record 130106 DOI 10.17182/hepdata.34820

The total and differential cross sections of the reactions K − p → π 0 Λ (1520), ηΛ(1520) and η′ Λ(1520) have been measured. Prominent forward peaks are onserved in all three reactions. The first reaction shows also a backward peak. The spin density matrix elements of the Λ(1520) in this reaction are determined. For forward production the results show a remarkable alignment of the Λ(1520) corresponding to an M2 transition in the model of Stodolsky-Sakurai for 3 2 − baryon production.

0 data tables match query

Strangeness production in deep-inelastic positron proton scattering at HERA.

The H1 collaboration Aid, S. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 480 (1996) 3-34, 1996.
Inspire Record 421030 DOI 10.17182/hepdata.44711

Measurements are presented of $K~0$ meson and $\Lambda$ baryon production in deep-inelastic positron-proton scattering (DIS) in the kinematic range $10 < Q~2 < 70\,$GeV$~2$ and $10~{-4} < x < 10~{-2}$. The measurements, obtained using the H1 detector at the HERA collider, are discussed in the light of possible mechanisms for increased strangeness production at low Bjorken-$x$. Comparisons of the $x_F$ spectra, where $x_F$ is the fractional longitudinal momentum in the hadronic centre-of-mass frame, with results from electron-positron annihilation are made. The $x_F$ spectra and the $K~0$ ``seagull'' plot are compared with previous DIS results. The mean $K~0$ and $\Lambda$ multiplicities are studied as a function of the centre-of-mass energy $W$ and are observed to be consistent with a logarithmic increase with $W$ when compared with previous measurements. A comparison of the levels of strangeness production in diffractive and non-diffractive DIS is made. An upper limit of $0.9\,$nb, at the $95\%$ confidence level, is placed on the cross-section for QCD instanton induced events.

0 data tables match query

Strange particle production in sulphur - tungsten interactions at 200-GeV/c per nucleon

The WA85 collaboration Kinson, J.B. ; Abatzis, S. ; Antinori, F. ; et al.
Nucl.Phys.A 544 (1992) 321-334, 1992.
Inspire Record 321220 DOI 10.17182/hepdata.36664

Multi-strange baryon and anti-baryon production is expected to be a useful probe in the search for Quark-Gluon Plasma formation. We present the transverse mass distributions of negative particles, K o s, Λs, Λ s, and Ξ − s produced in sulphurtungsten interactions at 200 GeV/c per nucleon and give the corrected ratios Λ Λ, Ξ − Λ and Ξ − /Λ . We note that our ratio Ξ − / Λ appears large in comparison to that from p p interactions.

0 data tables match query

Search for Neutrino-Induced Neutral Current $\Delta$ Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess Under a Single-Photon Hypothesis

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.Lett. 128 (2022) 111801, 2022.
Inspire Record 1937333 DOI 10.17182/hepdata.114860

We report results from a search for neutrino-induced neutral current (NC) resonant $\Delta$(1232) baryon production followed by $\Delta$ radiative decay, with a $\langle0.8\rangle$~GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.80$\times$10$^{20}$ protons on target) are used to select single-photon events with one or zero protons and without charged leptons in the final state ($1\gamma1p$ and $1\gamma0p$, respectively). The background is constrained via an in-situ high-purity measurement of NC $\pi^0$ events, made possible via dedicated $2\gamma1p$ and $2\gamma0p$ selections. A total of 16 and 153 events are observed for the $1\gamma1p$ and $1\gamma0p$ selections, respectively, compared to a constrained background prediction of $20.5 \pm 3.65 \text{(sys.)} $ and $145.1 \pm 13.8 \text{(sys.)} $ events. The data lead to a bound on an anomalous enhancement of the normalization of NC $\Delta$ radiative decay of less than $2.3$ times the predicted nominal rate for this process at the 90% confidence level (CL). The measurement disfavors a candidate photon interpretation of the MiniBooNE low-energy excess as a factor of $3.18$ times the nominal NC $\Delta$ radiative decay rate at the 94.8% CL, in favor of the nominal prediction, and represents a greater than $50$-fold improvement over the world's best limit on single-photon production in NC interactions in the sub-GeV neutrino energy range

0 data tables match query

Production of $\Lambda_\mathrm{c}^+$ baryons in proton-proton and lead-lead collisions at $\sqrt{s_\mathrm{NN}}=$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135328, 2020.
Inspire Record 1738943 DOI 10.17182/hepdata.88290

The differential cross sections of $\Lambda_\mathrm{c}^+$ baryon production are measured via the exclusive decay channel $\Lambda_\mathrm{c}^+ \to $pK$^-\pi^+$, as a function of transverse momentum ($p_\mathrm{T}$) in proton-proton (pp) and lead-lead (PbPb) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV with the CMS detector at the LHC. The measurement is performed within the $\Lambda_\mathrm{c}^+$ rapidity interval $|y|<$1.0 in the $p_\mathrm{T}$ range of 5-20 GeV/$c$ in pp and 10-20 GeV/$c$ in PbPb collisions. The observed yields of $\Lambda_\mathrm{c}^+$ for $p_\mathrm{T}$ of 10-20 GeV/$c$ suggest a possible suppression in central PbPb collisions compared to pp collisions. The $\Lambda_\mathrm{c}^+/$D$^0$ production ratio in pp collisions is compared to theoretical models. In PbPb collisions, this ratio is consistent with the result from pp collisions in their common $p_\mathrm{T}$ range.

0 data tables match query

Nuclear effects on hadron production in d + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 74 (2006) 024904, 2006.
Inspire Record 711951 DOI 10.17182/hepdata.141892

PHENIX has measured the centrality dependence of mid-rapidity pion, kaon and proton transverse momentum distributions in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV. The p+p data provide a reference for nuclear effects in d+Au and previously measured Au+Au collisions. Hadron production is enhanced in d+Au, relative to independent nucleon-nucleon scattering, as was observed in lower energy collisions. The nuclear modification factor for (anti) protons is larger than that for pions. The difference increases with centrality, but is not sufficient to account for the abundance of baryon production observed in central Au+Au collisions at RHIC. The centrality dependence in d+Au shows that the nuclear modification factor increases gradually with the number of collisions suffered by each participant nucleon. We also present comparisons with lower energy data as well as with parton recombination and other theoretical models of nuclear effects on particle production.

0 data tables match query

Mid-rapidity Lambda and Antilambda production in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 092301, 2002.
Inspire Record 584141 DOI 10.17182/hepdata.99050

We report the first measurement of strange ($\Lambda$) and anti-strange ($\bar{\Lambda}$) baryon production from $\sqrt{s_{_{NN}}}=130$ GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and transverse mass distributions at mid-rapidity are presented as a function of centrality. The yield of $\Lambda$ and $\bar{\Lambda}$ hyperons is found to be approximately proportional to the number of negative hadrons. The production of $\bar{\Lambda}$ hyperons relative to negative hadrons increases very rapidly with transverse momentum. The magnitude of the increase cannot be described by existing hadronic string fragmentation models.

0 data tables match query

Measurement of very forward neutron energy spectra for 7 TeV proton--proton collisions at the Large Hadron Collider

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Lett.B 750 (2015) 360-366, 2015.
Inspire Record 1351909 DOI 10.17182/hepdata.73320

The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However no model perfectly explains the experimental results in the whole pseudo-rapidity range. The experimental data indicate the most abundant neutron production rate relative to the photon production, which does not agree with predictions of the models.

0 data tables match query

Measurement of leading proton and neutron production in deep inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 6 (1999) 587-602, 1999.
Inspire Record 478983 DOI 10.17182/hepdata.44169

Deep--inelastic scattering events with a leading baryon have been detected by the H1 experiment at HERA using a forward proton spectrometer and a forward neutron calorimeter. Semi--inclusive cross sections have been measured in the kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T <= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV, or a neutron with energy E' >= 160 GeV. The measurements are used to test production models and factorization hypotheses. A Regge model of leading baryon production which consists of pion, pomeron and secondary reggeon exchanges gives an acceptable description of both semi-inclusive cross sections in the region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading neutron data are used to estimate for the first time the structure function of the pion at small Bjorken--x.

0 data tables match query

Inclusive sigma+ and sigma0 production in hadronic Z decays

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 479 (2000) 79-88, 2000.
Inspire Record 524450 DOI 10.17182/hepdata.49982

We report on measurements of the inclusive production rate of Sigma+ and Sigma0 baryons in hadronic Z decays collected with the L3 detector at LEP. The Sigma+ baryons are detected through the decay Sigma+ -> p pi0, while the Sigma0 baryons are detected via the decay mode Sigma0 -> Lambda gamma. The average numbers of Sigma+ and Sigma0 per hadronic Z decay are measured to be: &lt; N_Sigma+ > + &lt; N_Sigma+~ > = 0.114 +/- 0.011 (stat) +/- 0.009 (syst), &lt; N_Sigma0 > + &lt; N_Sigma0~ > = 0.095 +/- 0.015 (stat) +/- 0.013 (syst). These rates are found to be higher than the predictions from Monte Carlo hadronization models and analytical parameterizations of strange baryon production.

0 data tables match query