Transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson region from $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 86 (2012) 052010, 2012.
Inspire Record 1124333 DOI 10.17182/hepdata.60522

The transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson mass region of 66-116 GeV/$c^2$ is precisely measured using Run II data corresponding to 2.1 fb$^{-1}$ of integrated luminosity recorded by the Collider Detector at Fermilab. The cross section is compared with quantum chromodynamic calculations. One is a fixed-order perturbative calculation at ${\cal O}(\alpha_s^2)$, and the other combines perturbative predictions at high transverse momentum with the gluon resummation formalism at low transverse momentum. Comparisons of the measurement with calculations show reasonable agreement. The measurement is of sufficient precision to allow refinements in the understanding of the transverse momentum distribution.

0 data tables match query

Measurement of the Inclusive Isolated Prompt Photon Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using the CDF Detector

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 80 (2009) 111106, 2009.
Inspire Record 834437 DOI 10.17182/hepdata.53755

A measurement of the cross section for the inclusive production of isolated photons by the CDF experiment at the Fermilab Tevatron collider is presented. The measurement covers the pseudorapidity region |eta^gamma|<1.0 and the transverse energy range E_T^gamma>30 GeV and is based on 2.5/fb of integrated luminosity. The sample is almost a factor of seven larger than those used for recent published results and extends the E_T^gamma coverage by 100 GeV. The result agrees with next-to-leading order perturbative QCD calculations within uncertainties over the range 50<E_Tgamma<400 GeV, though the energy spectrum in the data shows a steeper slope at lower E_T^gamma.

0 data tables match query

Measurement of the inclusive jet cross-section in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 64 (2001) 032001, 2001.
Inspire Record 552797 DOI 10.17182/hepdata.42928

We present results from the measurement of the inclusive jet cross section for jet transverse energies from 40 to 465 GeV in the pseudo-rapidity range $0.1<|\eta|<0.7$. The results are based on 87 $pb^{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron Collider. The data are consistent with previously published results. The data are also consistent with QCD predictions given the flexibility allowed from current knowledge of the proton parton distributions. We develop a new procedure for ranking the agreement of the parton distributions with data and find that the data are best described by QCD predictions using the parton distribution functions which have a large gluon contribution at high $E_T$ (CTEQ4HJ).

0 data tables match query

Charged jet evolution and the underlying event in proton - anti-proton collisions at 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 092002, 2002.
Inspire Record 564673 DOI 10.17182/hepdata.42044

The growth and development of “charged particle jets” produced in proton-antiproton collisions at 1.8 TeV  are studied over a transverse momentum range from 0.5 GeV/c to 50 GeV/c. A variety of leading (highest transverse momentum) charged jet observables are compared with the QCD Monte Carlo models HERWIG, ISAJET, and PYTHIA. The models describe fairly well the multiplicity distribution of charged particles within the leading charged jet, the size of the leading charged jet, the radial distribution of charged particles and transverse momentum around the leading charged jet direction, and the momentum distribution of charged particles within the leading charged jet. The direction of the leading “charged particle jet” in each event is used to define three regions of η−φ space. The “toward” region contains the leading “charged particle jet,” while the “away” region, on the average, contains the away-side jet. The “transverse” region is perpendicular to the plane of the hard 2-to-2 scattering and is very sensitive to the “underlying event” component of the QCD Monte Carlo models. HERWIG, ISAJET, and PYTHIA with their default parameters do not describe correctly all the properties of the “transverse” region.

0 data tables match query

The Underlying event in hard interactions at the Tevatron anti-p p collider

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 70 (2004) 072002, 2004.
Inspire Record 647490 DOI 10.17182/hepdata.22135

For comparison of inclusive jet cross sections measured at hadron-hadron colliders to next-to-leading order (NLO) parton-level calculations, the energy deposited in the jet cone by spectator parton interactions must first be subtracted. The assumption made at the Tevatron is that the spectator parton interaction energy is similar to the ambient level measured in minimum bias events. In this paper, we test this assumption by measuring the ambient charged track momentum in events containing large transverse energy jets at $\sqrt{s}=1800$ GeV and $\sqrt{s}=630$ GeV and comparing this ambient momentum with that observed both in minimum bias events and with that predicted by two Monte Carlo models. Two cones in $\eta$--$\phi$ space are defined, at the same pseudo-rapidity, $\eta$, as the jet with the highest transverse energy ($E_T^{(1)}$), and at $\pm 90^o$ in the azimuthal direction, $\phi$. The total charged track momentum inside each of the two cones is measured. The minimum momentum in the two cones is almost independent of $E_T^{(1)}$ and is similar to the momentum observed in minimum bias events, whereas the maximum momentum increases roughly linearly with the jet $E_T^{(1)}$ over most of the measured range. This study will help improve the precision of comparisons of jet cross section data and NLO perturbative QCD predictions. %this is new The distribution of the sum of the track momenta in the two cones is also examined for five different $E_T^{(1)}$ bins. The HERWIG and PYTHIA Monte Carlos are reasonably successful in describing the data, but neither can describe completely all of the event properties.

0 data tables match query

Measurement of the cross section for W-boson production in association with jets in ppbar collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 77 (2008) 011108, 2008.
Inspire Record 768579 DOI 10.17182/hepdata.42714

We present a measurement of the cross section for W-boson production in association with jets in pbarp collisions at sqrt(s)=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 320 pb^-1 collected with the CDF II detector. W bosons are identified in their electron decay channel and jets are reconstructed using a cone algorithm. For each W+>= n-jet sample ($n= 1 - 4$) we measure sigma(ppbar =>W+>=n$-jet)x BR(W => e nu) with respect to the transverse energy E_T of the n^th-highest E_T jet above 20 GeV, for a restricted W => e nu decay phase space. The cross sections, corrected for all detector effects, can be directly compared to particle level W+ jet(s) predictions. We present here comparisons to leading order and next-to-leading order predictions.

0 data tables match query

Study of jet shapes in inclusive jet production in p anti-p collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Acosta, D. ; Adelman, J. ; Affolder, T. ; et al.
Phys.Rev.D 71 (2005) 112002, 2005.
Inspire Record 682179 DOI 10.17182/hepdata.42780

We report on a study of jet shapes in inclusive jet production in $p \bar{p}$ collisions at $\sqrt{s} = 1.96 {\rm TeV}$ using the upgraded Collider Detector at Fermilab in Run II (CDF II) based on an integrated luminosity of $170 \rm pb^{-1}$. Measurements are carried out on jets with rapidity $0.1 < |Y^{\rm jet}| < 0.7$ and transverse momentum 37 GeV/c $< P_T^{\rm jet} < 380$ GeV/c. The jets have been corrected to the hadron level. The measured jet shapes are compared to leading-order QCD parton-shower Monte Carlo predictions as implemented in the PYTHIA and HERWIG programs. PYTHIA, tuned to describe the underlying event as measured in CDF Run I, provides a better description of the measured jet shapes than does PYTHIA or HERWIG with their default parameters.

0 data tables match query

Measurement of the inclusive jet cross section in p anti-p interactions at s**(1/2) = 1.96-TeV using a cone-based jet algorithm

The CDF collaboration Abulencia, A. ; Acosta, D. ; Adelman, J. ; et al.
Phys.Rev.D 74 (2006) 071103, 2006.
Inspire Record 699933 DOI 10.17182/hepdata.41844

We present a measurement of the inclusive jet cross section in ppbar interactions at sqrt{s}=1.96 TeV using 385 pb^{-1} of data collected with the CDF II detector at the Fermilab Tevatron. The results are obtained using an improved cone-based jet algorithm (Midpoint). The data cover the jet transverse momentum range from 61 to 620 GeV/c, extending the reach by almost 150 GeV/c compared with previous measurements at the Tevatron. The results are in good agreement with next-to-leading order perturbative QCD predictions using the CTEQ6.1M parton distribution functions.

0 data tables match query

Measurement of the cross section for prompt diphoton production in p anti-p collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Acosta, D. ; Adelman, J. ; Affolder, T. ; et al.
Phys.Rev.Lett. 95 (2005) 022003, 2005.
Inspire Record 667384 DOI 10.17182/hepdata.41865

We report a measurement of the rate of prompt diphoton production in $p\bar{p}$ collisions at $\sqrt{s}=1.96 ~\hbox{TeV}$ using a data sample of 207 pb$^{-1}$ collected with the upgraded Collider Detector at Fermilab (CDF II). The background from non-prompt sources is determined using a statistical method based on differences in the electromagnetic showers. The cross section is measured as a function of the diphoton mass, the transverse momentum of the diphoton system, and the azimuthal angle between the two photons and is found to be consistent with perturbative QCD predictions.

0 data tables match query

Measurement of Particle Production and Inclusive Differential Cross Sections in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 112005, 2009.
Inspire Record 817466 DOI 10.17182/hepdata.52134

We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.

0 data tables match query