Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 032302, 2014.
Inspire Record 1255072 DOI 10.17182/hepdata.73343

We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

1 data table match query

Collision energy and centrality dependence of the net-proton $S\sigma$ and $\kappa\sigma^2$ from Au+Au and p+p collisions at RHIC.


Higher Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 022302, 2010.
Inspire Record 853304 DOI 10.17182/hepdata.73344

We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.

1 data table match query

Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions from Lattice QCD Calculations.


Beam energy dependence of (anti-)deuteron production in Au+Au collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 99 (2019) 064905, 2019.
Inspire Record 1727273 DOI 10.17182/hepdata.105510

We report the energy dependence of mid-rapidity (anti-)deuteron production in Au+Au collisions at $\sqrt{s_\text{NN}} =\ $7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, measured by the STAR experiment at RHIC. The yield of deuterons is found to be well described by the thermal model. The collision energy, centrality, and transverse momentum dependence of the coalescence parameter $B_2$ are discussed. We find that the values of $B_2$ for anti-deuterons are systematically lower than those for deuterons, indicating that the correlation volume of anti-baryons is larger than that of baryons at $\sqrt{s_\text{NN}}$ from 19.6 to 39 GeV. In addition, values of $B_2$ are found to vary with collision energy and show a broad minimum around $\sqrt{s_\text{NN}}=\ $20 to 40 GeV, which might imply a change of the equation of state of the medium in these collisions.

1 data table match query

'transverse momentum spectra for deuterons in Au+Au collisions'


Measurement of long-range pseudorapidity correlations and azimuthal harmonics in $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV proton-lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 90 (2014) 044906, 2014.
Inspire Record 1315325 DOI 10.17182/hepdata.66357

Measurements of two-particle correlation functions and the first five azimuthal harmonics, $v_1$ to $v_5$, are presented, using 28 $\mathrm{nb}^{-1}$ of $p$+Pb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV measured with the ATLAS detector at the LHC. Significant long-range "ridge-like" correlations are observed for pairs with small relative azimuthal angle ($|\Delta\phi|<\pi/3$) and back-to-back pairs ($|\Delta\phi| > 2\pi/3$) over the transverse momentum range $0.4 < p_{\rm T} < 12$ GeV and in different intervals of event activity. The event activity is defined by either the number of reconstructed tracks or the total transverse energy on the Pb-fragmentation side. The azimuthal structure of such long-range correlations is Fourier decomposed to obtain the harmonics $v_n$ as a function of $p_{\rm T}$ and event activity. The extracted $v_n$ values for $n=2$ to 5 decrease with $n$. The $v_2$ and $v_3$ values are found to be positive in the measured $p_{\rm T}$ range. The $v_1$ is also measured as a function of $p_{\rm T}$ and is observed to change sign around $p_{\rm T}\approx 1.5$-2.0 GeV and then increase to about 0.1 for $p_{\rm T}>4$ GeV. The $v_2(p_{\rm T})$, $v_3(p_{\rm T})$ and $v_4(p_{\rm T})$ are compared to the $v_n$ coefficients in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}} =2.76$ TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average $p_{\rm T}$ of particles produced in the two collision systems.

1 data table match query

Integrated per-trigger yield, $Y_{int}$, on the away-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.


Centrality dependence of Pi, K, p production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 88 (2013) 044910, 2013.
Inspire Record 1222333 DOI 10.17182/hepdata.61925

In this paper measurements are presented of $\rm \pi$$^+$, $\rm \pi$$^-$, K$^+$, K$^-$, p and $\overline{\rm p}$ production at mid-rapidity < 0.5, in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV as a function of centrality. The measurement covers the transverse momentum ($p_{\rm T}$) range from 100, 200, 300 MeV/$c$ up to 3, 3, 4.6 GeV/$c$, for $\rm\pi$, K, and p respectively. The measured $p_{\rm T}$ distributions and yields are compared to expectations based on hydrodynamic, thermal and recombination models. The spectral shapes of central collisions show a stronger radial flow than measured at lower energies, which can be described in hydrodynamic models. In peripheral collisions, the $p_{\rm T}$ distributions are not well reproduced by hydrodynamic models. Ratios of integrated particle yields are found to be nearly independent of centrality. The yield of protons normalized to pions is a factor ~1.5 lower than the expectation from thermal models.

1 data table match query

pT-differential invariant yield of proton and antiproton for centrality 5-10%.


Search for a new pseudoscalar decaying into a pair of muons in events with a top-quark pair at $\sqrt{s} = 13$~TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.D 108 (2023) 092007, 2023.
Inspire Record 2654723 DOI 10.17182/hepdata.139987

A search for a new pseudoscalar $a$-boson produced in events with a top-quark pair, where the $a$-boson decays into a pair of muons, is performed using $\sqrt{s} = 13$ TeV $pp$ collision data collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of $139\, \mathrm{fb}^{-1}$. The search targets the final state where only one top quark decays to an electron or muon, resulting in a signature with three leptons $e\mu\mu$ and $\mu\mu\mu$. No significant excess of events above the Standard Model expectation is observed and upper limits are set on two signal models: $pp \rightarrow t\bar{t}a$ and $pp \rightarrow t\bar{t}$ with $t \rightarrow H^\pm b$, $H^\pm \rightarrow W^\pm a$, where $a\rightarrow\mu\mu$, in the mass ranges $15$ GeV $ < m_a < 72$ GeV and $120$ GeV $ \leq m_{H^{\pm}} \leq 160$ GeV.

1 data table match query

Cutflow for the signal mass point $t\bar{t}a$, $m_{a} = 60$ GeV, as well as the dominant backgrounds estimated from simulation ($t\bar{t}Z$, $WZ$, $t\bar{t}H$) and data, for the corresponding signal mass hypothesis, for the muon channel $\mu\mu\mu$. For the signal yields, a cross section times branching ratio of 1 fb is assumed. The yields are presented before the profile likelihood fit.


Search for dark photons in rare $Z$ boson decays with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 131 (2023) 251801, 2023.
Inspire Record 2668340 DOI 10.17182/hepdata.140310

A search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the Standard Model $Z$ boson is presented, using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark Higgs boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon's coupling to the dark Higgs boson times the kinetic mixing between the Standard Model photon and the dark photon, $\alpha_{D}\varepsilon^2$, in the dark photon mass range of $[5, 40]$ GeV except for the $\Upsilon$ mass window $[8.8, 11.1]$ GeV. This search explores new parameter space not previously excluded by other experiments.

1 data table match query

Observed and expected upper limits at 95% CL on the branching fraction as a function of $m_{A'}$ at dark Higgs boson mass of 50 GeV


Search for high-mass $W\gamma$ and $Z\gamma$ resonances using hadronic W/Z boson decays from 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 07 (2023) 125, 2023.
Inspire Record 2653725 DOI 10.17182/hepdata.136027

A search for high-mass charged and neutral bosons decaying to $W\gamma$ and $Z\gamma$ final states is presented in this paper. The analysis uses a data sample of $\sqrt{s} = 13$ TeV proton-proton collisions with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during LHC Run 2 operation. The sensitivity of the search is determined using models of the production and decay of spin-1 charged bosons and spin-0/2 neutral bosons. The range of resonance masses explored extends from 1.0 TeV to 6.8 TeV. At these high resonance masses, it is beneficial to target the hadronic decays of the $W$ and $Z$ bosons because of their large branching fractions. The decay products of the high-momentum $W/Z$ bosons are strongly collimated and boosted-boson tagging techniques are employed to improve the sensitivity. No evidence of a signal above the Standard Model backgrounds is observed, and upper limits on the production cross-sections of these bosons times their branching fractions to $W\gamma$ and $Z\gamma$ are derived for various boson production models.

1 data table match query

The jet mass distribution of large-$R$ jets originating from the hadronic decay of $W$ and $Z$ bosons produced from the decay of BSM bosons with mass $m_X = 2000$ GeV. The decays simulated are for the production models $q\bar{q'}\to X^{\pm} \to W^{\pm}\gamma$ with a spin-1 resonance $X^{\pm}$ and $gg\to X^0 \to Z\gamma$ with a spin-0 resonance $X^{0}$.


Version 2
Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Eur.Phys.J.C 80 (2020) 167, 2020.
Inspire Record 1748157 DOI 10.17182/hepdata.93535

The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity ($\ |y\ | < 0.5$) are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of $\rm{K}^{0}_{S}$, $\Lambda$, $\Xi$, and $\Omega$ increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.

2 data tables match query

$\Xi^{-}+\bar{\Xi^{+}}$ transverse momentum spectrum - SPDtracklets08 multiplicity classes. Total systematic uncertainties include both correlated and uncorrelated uncertainties across multiplicity. Uncorrelated systematic originating from the multiplicity dependence of the efficiency (2%) is not included.

$\Xi^{-}+\bar{\Xi^{+}}$ transverse momentum spectrum - SPDtracklets08 multiplicity classes. Total systematic uncertainties include both correlated and uncorrelated uncertainties across multiplicity. Uncorrelated systematic originating from the multiplicity dependence of the efficiency (2%) is not included.


Production of pions, kaons, (anti-)protons and $\phi$ mesons in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 584, 2021.
Inspire Record 1840099 DOI 10.17182/hepdata.110161

The first measurement of the production of pions, kaons, (anti-)protons and $\phi$ mesons at midrapidity in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV is presented. Transverse momentum ($p_{\rm T}$) spectra and $p_{\rm T}$-integrated yields are extracted in several centrality intervals bridging from p-Pb to mid-central Pb-Pb collisions in terms of final-state multiplicity. The study of Xe-Xe and Pb-Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe-Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the $\phi$-to-pion ratio with increasing final-state multiplicity.

1 data table match query

$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 60-70%.