Inverse Muon Decay, $\nu_\mu e \to \mu^- \nu_e$, at the Fermilab Tevatron

Mishra, S.R. ; Bachmann, K.T. ; Blair, R.E. ; et al.
Phys.Lett.B 252 (1990) 170-176, 1990.
Inspire Record 296115 DOI 10.17182/hepdata.15430

We report an improved measurement of the inverse muon decay process, ν μ +e→ μ − + ν e , at the Fermilab Tevatron. The rate of this reaction with respect to the ν μ -N charged current interaction is measured to be (0.1245±0.0057(stat.)±0.0031 (sys.)) × 10 −2 . The measurement confirms the standard model predictions for the Lorentz structure of the weak current, the helicity of the neutrino, and the energy dependence of the cross section.

0 data tables match query

Search for the lepton number violating process anti-nu/mu e- --> mu- anti-nu/e.

The NuTeV collaboration Formaggio, J.A. ; Yu, J. ; Yu, J. ; et al.
Phys.Rev.Lett. 87 (2001) 071803, 2001.
Inspire Record 555474 DOI 10.17182/hepdata.42668

The NuTeV experiment at Fermilab has used a sign-selected neutrino beam to perform a search for the lepton number violating process $\bar{\nu}_mu e^- \to \mu^- \bar{\nu}_e$, and to measure the cross-section of the Standard Model inverse muon decay process $\nu_{\mu} e^- \to \mu^- \nu_e$. NuTeV measures the inverse muon decay asymptotic cross-section $\sigma/E$ to be 13.8 $\pm$ 1.2 $\pm$ 1.4 x $10^{-42} cm^2$/GeV. The experiment also observes no evidence for lepton number violation and places one of the most restrictive limits on the LNV/IMD cross-section ratio at $\sigma (\bar{\nu}_{\mu} e^- \to \mu^- \bar{\nu}_e) /\sigma (\nu_{\mu}e^- \to \mu^- \nu_e$) $\le$ 1.7% at 90% C.L. for V-A couplings and $\le$ 0.6% for scalar couplings.

0 data tables match query

A Measurement of $\Lambda_{\overline{MS}}$ from $\nu_{\mu}$ - Fe Nonsinglet Structure Functions at the Fermilab Tevatron

Quintas, P.Z. ; Leung, W.C. ; Mishra, S.R. ; et al.
Phys.Rev.Lett. 71 (1993) 1307-1310, 1993.
Inspire Record 336860 DOI 10.17182/hepdata.19733

The CCFR Collaboration presents a measurement of scaling violations of the nonsinglet structure function and a comparison to the predictions of perturbative QCD. The value of ΛQCD, from the nonsinglet evolution with Q2>15 GeV2 and in the modified minimal-subtraction renormalization scheme, is found to be 210±28(stat)±41(syst) MeV.

0 data tables match query

Neutrino Production of Opposite Sign Dimuons at Tevatron Energies

Foudas, C. ; Bachmann, K.T. ; Bernstein, R.H. ; et al.
Phys.Rev.Lett. 64 (1990) 1207, 1990.
Inspire Record 26417 DOI 10.17182/hepdata.20000

We have measured the strange-quark content of the nucleon, ηs=−0.08+0.012, and the Kobayashi-Maskawa matrix element ‖Vcd‖=0.220−0.018+0.015 using a sample of 1797 νμ- and ν¯μ-induced μ−μ+ events with Pμ≥9 GeV/c and 30≤Eν≤600 GeV. The data are consistent with the slow-rescaling hypothesis of charm production in ν-N scattering and within this formalism yield a value of the charm-quark mass parameter mc=1.31−0.48+0.64 GeV/c2. .AE

0 data tables match query

Measurement of the strange sea distribution using neutrino charm production

Rabinowitz, S.A. ; Arroyo, C. ; Bachmann, K.T. ; et al.
Phys.Rev.Lett. 70 (1993) 134-137, 1993.
Inspire Record 354524 DOI 10.17182/hepdata.19779

A high-statistics study by the Columbia-Chicago-Fermilab-Rochester Collaboration of opposite-sign dimuon events induced by neutrino-nucleon scattering at the Fermilab Tevatron is presented. A sample of 5044 νμ and 1062 ν¯μ induced μ∓μ± events with Pμ1≥9 GeV/c, Pμ2≥5 GeV/c, 30≤Eν≤600 GeV, and 〈Q2〉=22.2 GeV2/c2 is observed. The data support the slow-rescaling model of charm production with a value of mc=1.31±0.24 GeV2/c2. The first measurement of the Q2 dependence of the nucleon strange quark distribution xs(x) is presented. The data yield the Cabibbo-Kobayashi-Maskawa matrix element ‖Vcd‖=0.209±0.012 and the nucleon fractional strangeness content ηs=0.064−0.007+0.008.

0 data tables match query

Neutrino Production of Same Sign Dimuons

Schumm, B.A. ; Merritt, F.S. ; Oreglia, M.J. ; et al.
Phys.Rev.Lett. 60 (1988) 1618, 1988.
Inspire Record 23079 DOI 10.17182/hepdata.20157

In a sample of 670 000 charged-current neutrino events, 101 μ−μ− events have been observed, with 30 GeV<Eν<600 GeV and Pμ>9 GeV/c for both muons. After background subtraction, 18.5±13.9 events remain, yielding a prompt rate of (5.5±4.1)×10−5 per charged-current event. A sample of 124 000 antineutrino events yields 15 μ+μ+ events, giving 6.4±4.2 events after background subtraction and a prompt rate of (1.0±0.7)×10−4 per charged-current event. The numbers and kinematic distributions of these events are consistent with standard model sources.

0 data tables match query

Neutrino production of same sign dimuons at the Fermilab Tevatron

Sandler, P.H. ; Kinnel, T.S. ; Smith, W.H. ; et al.
Z.Phys.C 57 (1993) 1-12, 1993.
Inspire Record 32390 DOI 10.17182/hepdata.14493

The rate of neutrino- and antineutrino-induced prompt same-sign dimuon production in steel was measured using a sample of μ−μ− events and 25 μ+μ+ events withPμ>9 GeV/c, produced in 1.5 millionvμ and 0.3 million\(\overline {v_\mu}\) induced charged-current events with energies between 30 GeV and 600 GeV. The data were obtained with the Chicago-Columbia-Fermilab-Rochester (CCFR) neutrino detector in the Fermilab Tevatron Quadrupole Triplet Neutrino Beam during experiments E 744 and E 770. After background subtraction, the prompt rate of same-sign dimuon production is (0.53±0.24)×10−4 pervμ charged-current event and (0.52±0.33)×10−4 per\(\overline {v_\mu}\) charged-current event. The kinematic distributions of the same-sign dimuon events after background subtraction are consistent with those of the non-prompt background due to meson decays in the hadron shower of a charged-current event. Calculations ofc\(\bar c\) gluon bremsstrahlung, based on improved measurements of the charm mass parameter and nucleon structure functions by the CCFR collaboration, yield a prompt rate of (0.09±0.39)×10−4 pervμ charged-current event. In this case,c\(\bar c\) gluon bremsstrahlung is probably not an observable source of prompt same-sign dimuons.

0 data tables match query

A Precise measurement of the weak mixing angle in neutrino nucleon scattering

The CCFR collaboration Arroyo, C. ; King, B.J. ; Bachmann, K.T. ; et al.
Phys.Rev.Lett. 72 (1994) 3452-3455, 1994.
Inspire Record 360411 DOI 10.17182/hepdata.37276

We report a precise measurement of the weak mixing angle from the ratio of neutral current to charged current inclusive cross-sections in deep-inelastic neutrino-nucleon scattering. The data were gathered at the CCFR neutrino detector in the Fermilab quadrupole-triplet neutrino beam, with neutrino energies up to 600 GeV. Using the on-shell definition, ${\rm sin ~2\theta_W} \equiv 1 - \frac{{\rm M_W} ~2}{{\rm M_Z} ~2}$, we obtain ${\rm sin ~2\theta_W} = 0.2218 \pm 0.0025 ({\rm stat.}) \pm 0.0036 ({\rm exp.\: syst.}) \pm 0.0040 ({\rm model})$.

0 data tables match query

Measurement of the Nucleon Strange-Antistrange Asymmetry at Next-to-Leading Order in QCD from NuTeV Dimuon Data

The NuTeV collaboration Mason, D. ; Brau, J. ; Drucker, R.B. ; et al.
Phys.Rev.Lett. 99 (2007) 192001, 2007.
Inspire Record 774494 DOI 10.17182/hepdata.42701

We present a new measurement of the difference between the nucleon strange and antistrange quark distributions from dimuon events recorded by the NuTeV experiment at Fermilab. This analysis is the first to use a complete next to leading order QCD d escription of charm production from neutrino scattering. Dimuon events in neutrino deep inelastic scattering allow direct and independent study of the strange and antistrange content of the nucleon. We find a positive strange asymmetry with a significance of 1.6sigma . We also report a new measurement of the charm mass.

0 data tables match query

Precise measurement of neutrino and anti-neutrino differential cross sections.

The NuTeV collaboration Tzanov, M. ; Naples, D. ; Boyd, S. ; et al.
Phys.Rev.D 74 (2006) 012008, 2006.
Inspire Record 691719 DOI 10.17182/hepdata.11120

The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F_2(x,Q^2) and xF_3(x,Q^2), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.

0 data tables match query