A Measurement of the Neutral Current Electroweak Parameters using the Fermilab Narrow Band Neutrino Beam

Reutens, P.G. ; Merritt, F.S. ; Oreglia, M.J. ; et al.
Z.Phys.C 45 (1990) 539-550, 1990.
Inspire Record 305243 DOI 10.17182/hepdata.15280

We report a measurement of the electroweak parameters sin2θw and ϱ based on the ratios of neutral current to charged current events measured in the Fermilab narrow-band neutrino beam at energies of 30–240 GeV. The data are fully corrected for radiative effects, heavy-quark production, and other effects. The best value for sin2θw obtained, sin2θw=0.239±0.011, is consistent with the most recent values fromW andZ production, as well as from other neutrino experiments.

0 data tables match query

Nucleon structure functions from high energy neutrino interactions

Oltman, E. ; Auchincloss, Priscilla S. ; Blair, R.E. ; et al.
Z.Phys.C 53 (1992) 51-71, 1992.
Inspire Record 335706 DOI 10.17182/hepdata.1433

Structure functions obtained from high energy neutrino and antineutrino scattering from an iron target are presented. These were extracted from the combined data of Fermilab experiments E616 and E701; these utilized narrow band beam runs between 1979–1982. The structure functions are used to test the validity of quarkparton model (QPM) predictions and to extract the QCD scale parameter Λ from fits to the Altarelli-Parisi equations.

0 data tables match query

A Measurement of $\Lambda_{\overline{MS}}$ from $\nu_{\mu}$ - Fe Nonsinglet Structure Functions at the Fermilab Tevatron

Quintas, P.Z. ; Leung, W.C. ; Mishra, S.R. ; et al.
Phys.Rev.Lett. 71 (1993) 1307-1310, 1993.
Inspire Record 336860 DOI 10.17182/hepdata.19733

The CCFR Collaboration presents a measurement of scaling violations of the nonsinglet structure function and a comparison to the predictions of perturbative QCD. The value of ΛQCD, from the nonsinglet evolution with Q2>15 GeV2 and in the modified minimal-subtraction renormalization scheme, is found to be 210±28(stat)±41(syst) MeV.

0 data tables match query

Measurement of the strange sea distribution using neutrino charm production

Rabinowitz, S.A. ; Arroyo, C. ; Bachmann, K.T. ; et al.
Phys.Rev.Lett. 70 (1993) 134-137, 1993.
Inspire Record 354524 DOI 10.17182/hepdata.19779

A high-statistics study by the Columbia-Chicago-Fermilab-Rochester Collaboration of opposite-sign dimuon events induced by neutrino-nucleon scattering at the Fermilab Tevatron is presented. A sample of 5044 νμ and 1062 ν¯μ induced μ∓μ± events with Pμ1≥9 GeV/c, Pμ2≥5 GeV/c, 30≤Eν≤600 GeV, and 〈Q2〉=22.2 GeV2/c2 is observed. The data support the slow-rescaling model of charm production with a value of mc=1.31±0.24 GeV2/c2. The first measurement of the Q2 dependence of the nucleon strange quark distribution xs(x) is presented. The data yield the Cabibbo-Kobayashi-Maskawa matrix element ‖Vcd‖=0.209±0.012 and the nucleon fractional strangeness content ηs=0.064−0.007+0.008.

0 data tables match query

Neutrino Production of Same Sign Dimuons

Schumm, B.A. ; Merritt, F.S. ; Oreglia, M.J. ; et al.
Phys.Rev.Lett. 60 (1988) 1618, 1988.
Inspire Record 23079 DOI 10.17182/hepdata.20157

In a sample of 670 000 charged-current neutrino events, 101 μ−μ− events have been observed, with 30 GeV<Eν<600 GeV and Pμ>9 GeV/c for both muons. After background subtraction, 18.5±13.9 events remain, yielding a prompt rate of (5.5±4.1)×10−5 per charged-current event. A sample of 124 000 antineutrino events yields 15 μ+μ+ events, giving 6.4±4.2 events after background subtraction and a prompt rate of (1.0±0.7)×10−4 per charged-current event. The numbers and kinematic distributions of these events are consistent with standard model sources.

0 data tables match query

Neutrino production of same sign dimuons at the Fermilab Tevatron

Sandler, P.H. ; Kinnel, T.S. ; Smith, W.H. ; et al.
Z.Phys.C 57 (1993) 1-12, 1993.
Inspire Record 32390 DOI 10.17182/hepdata.14493

The rate of neutrino- and antineutrino-induced prompt same-sign dimuon production in steel was measured using a sample of μ−μ− events and 25 μ+μ+ events withPμ>9 GeV/c, produced in 1.5 millionvμ and 0.3 million\(\overline {v_\mu}\) induced charged-current events with energies between 30 GeV and 600 GeV. The data were obtained with the Chicago-Columbia-Fermilab-Rochester (CCFR) neutrino detector in the Fermilab Tevatron Quadrupole Triplet Neutrino Beam during experiments E 744 and E 770. After background subtraction, the prompt rate of same-sign dimuon production is (0.53±0.24)×10−4 pervμ charged-current event and (0.52±0.33)×10−4 per\(\overline {v_\mu}\) charged-current event. The kinematic distributions of the same-sign dimuon events after background subtraction are consistent with those of the non-prompt background due to meson decays in the hadron shower of a charged-current event. Calculations ofc\(\bar c\) gluon bremsstrahlung, based on improved measurements of the charm mass parameter and nucleon structure functions by the CCFR collaboration, yield a prompt rate of (0.09±0.39)×10−4 pervμ charged-current event. In this case,c\(\bar c\) gluon bremsstrahlung is probably not an observable source of prompt same-sign dimuons.

0 data tables match query

Charm production studies at CDF

The CDF collaboration Reisert, B. ; Lewis, J. ; Liu, T. ; et al.
Nucl.Phys.B Proc.Suppl. 170 (2007) 243-247, 2007.
Inspire Record 766572 DOI 10.17182/hepdata.65519

The upgraded Collider Detector at Fermilab (CDF II) has a high bandwidth available for track based triggers. This capability in conjunction with the unprecedented integrated luminosity in excess of 1 fb −1 enables detailed studies of charm hadron production. CDF is now releasing first measurements of the prompt charm meson pair cross sections, which give access to QCD mechanisms by which charm quarks are produced in proton anti-proton collisions. Recent results on the spin alignment of J/ψ and ψ(2S) as well as on the relative production of the χc1(P1) and χc2(1P) challenge our understanding of the fragmentation of charm quarks into charmonium states.

0 data tables match query

Measurement of the Inclusive Charged Current Cross-section for Neutrino and Anti-neutrino Scattering on Isoscalar Nucleons

Auchincloss, Priscilla S. ; Blair, R. ; Haber, C. ; et al.
Z.Phys.C 48 (1990) 411-432, 1990.
Inspire Record 27761 DOI 10.17182/hepdata.15124

This paper reports on measurements of the total cross section for the inclusive reaction vμ+N, as a function of incident energy. Neutrinos and antineutrinos with energy in the range 3

0 data tables match query

A Study of D* Production in High-Energy $\gamma$ p Interactions

Sliwa, K. ; Appel, J.A. ; Biel, J. ; et al.
Phys.Rev.D 32 (1985) 1053-1060, 1985.
Inspire Record 194636 DOI 10.17182/hepdata.23561

We have studied D* production mechanisms using data from a photoproduction experiment at the Fermilab Tagged Photon Spectrometer. A large sample of charged D*’s was selected via the clean signature of the cascade decay D*→D0π+ and subsequently D0→K−π+ or D0→K−π+π0. The cross section for the process γp→(D*++anything)p at an average energy of 105 GeV was measured to be 88±32 nb. Only (11±7)% of D*’s were found to be consistent with being accompanied solely by a D¯* or a D¯; the remaining events contain additional particles. The distribution of the production angle of the D* in the photon-fragmentation-system center of mass is strongly anisotropic and consistent with the form f(θ*)=cos4θ*. We set a limit on the associated-production-process cross section σ(γp→(D¯*−+anything)Λc) x)<60 nb (90% C.L.).

0 data tables match query

Neutrino Production of Opposite Sign Dimuons at Tevatron Energies

Foudas, C. ; Bachmann, K.T. ; Bernstein, R.H. ; et al.
Phys.Rev.Lett. 64 (1990) 1207, 1990.
Inspire Record 26417 DOI 10.17182/hepdata.20000

We have measured the strange-quark content of the nucleon, ηs=−0.08+0.012, and the Kobayashi-Maskawa matrix element ‖Vcd‖=0.220−0.018+0.015 using a sample of 1797 νμ- and ν¯μ-induced μ−μ+ events with Pμ≥9 GeV/c and 30≤Eν≤600 GeV. The data are consistent with the slow-rescaling hypothesis of charm production in ν-N scattering and within this formalism yield a value of the charm-quark mass parameter mc=1.31−0.48+0.64 GeV/c2. .AE

0 data tables match query