Nucleon Structure Functions from High-Energy Neutrino Interactions with Iron and QCD Results

MacFarlane, D. ; Purohit, M.V. ; Messner, R.L. ; et al.
Z.Phys.C 26 (1984) 1-12, 1984.
Inspire Record 195928 DOI 10.17182/hepdata.16212

Nucleon structure functions obtained from neutrino and anti-neutrino scattering on iron nuclei at high energies (Ev=30 to 250 GeV) are presented. These results are compared with the results of other lepton-nucleon scattering experiments. The structure functions are used to test the validity of the Gross-Llewellyn-smith sum rule, which measures the number of valence quarks in the nucleons, and to obtain leading and second order QCD fits.

0 data tables match query

Inverse Muon Decay, $\nu_\mu e \to \mu^- \nu_e$, at the Fermilab Tevatron

Mishra, S.R. ; Bachmann, K.T. ; Blair, R.E. ; et al.
Phys.Lett.B 252 (1990) 170-176, 1990.
Inspire Record 296115 DOI 10.17182/hepdata.15430

We report an improved measurement of the inverse muon decay process, ν μ +e→ μ − + ν e , at the Fermilab Tevatron. The rate of this reaction with respect to the ν μ -N charged current interaction is measured to be (0.1245±0.0057(stat.)±0.0031 (sys.)) × 10 −2 . The measurement confirms the standard model predictions for the Lorentz structure of the weak current, the helicity of the neutrino, and the energy dependence of the cross section.

0 data tables match query

A measurement of alpha(s)(Q**2) from the Gross-Llewellyn Smith sum rule.

Kim, J.H. ; Harris, Deborah A. ; Arroyo, C.G. ; et al.
Phys.Rev.Lett. 81 (1998) 3595-3598, 1998.
Inspire Record 475039 DOI 10.17182/hepdata.19536

We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared ($Q^{2}$), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for $1 < Q^2 < 15 GeV^2/c^2$. A comparison with the order $\alpha^{3}_{s}$ theoretical predictions yields a determination of $\alpha_{s}$ at the scale of the Z-boson mass of $0.114 \pm^{.009}_{.012}$. This measurement provides a new and useful test of perturbative QCD at low $Q^2$, because of the low uncertainties in the higher order calculations.

0 data tables match query