The Ratio, rho, of the real to the imaginary part of the anti-p p forward elastic scattering amplitude at s**(1/2) = 1.8-TeV

The E-811 collaboration Avila, C ; Baker, W.F ; DeSalvo, R ; et al.
Phys.Lett.B 537 (2002) 41-44, 2002.
Inspire Record 586322 DOI 10.17182/hepdata.42841

We have measured $\rho$ , the ratio of the real to the imaginary part of the $p \bar{p}$ forward elastic scattering amplitude, at $\sqrt{s}$ = 1.8  TeV. Our result is $\rho$ = 0.132 $\pm$ 0.056; this can be combined with a previous measurement at the same energy to give $\rho$ = 0.135 $\pm$ 0.044.

0 data tables match query

Charm production studies at CDF

The CDF collaboration Reisert, B. ; Lewis, J. ; Liu, T. ; et al.
Nucl.Phys.B Proc.Suppl. 170 (2007) 243-247, 2007.
Inspire Record 766572 DOI 10.17182/hepdata.65519

The upgraded Collider Detector at Fermilab (CDF II) has a high bandwidth available for track based triggers. This capability in conjunction with the unprecedented integrated luminosity in excess of 1 fb −1 enables detailed studies of charm hadron production. CDF is now releasing first measurements of the prompt charm meson pair cross sections, which give access to QCD mechanisms by which charm quarks are produced in proton anti-proton collisions. Recent results on the spin alignment of J/ψ and ψ(2S) as well as on the relative production of the χc1(P1) and χc2(1P) challenge our understanding of the fragmentation of charm quarks into charmonium states.

0 data tables match query

CDF top quark production and mass

The CDF collaboration Incandela, J. ;
Nuovo Cim.A 109 (1996) 741-746, 1996.
Inspire Record 397701 DOI 10.17182/hepdata.43018

None

0 data tables match query

A Measurement of the proton-antiproton total cross-section at s**(1/2) = 1.8-TeV

The E811 collaboration Avila, C. ; Baker, W.F. ; DeSalvo, R. ; et al.
Phys.Lett.B 445 (1999) 419-422, 1999.
Inspire Record 478392 DOI 10.17182/hepdata.28126

We report a measurement of the p p ̄ total cross section at s =1.8 TeV at the Fermilab Tevatron Collider, using the luminosity independent method. Our result is σ T =71.71±2.02 mb. We also obtained values of the total elastic and total inelastic cross sections.

0 data tables match query

A Luminosity Independent Measurement of the $\bar{p} p$ Total Cross-section at $\sqrt{s}=1$.8-tev

The E-710 collaboration Amos, Norman A. ; Avila, C. ; Baker, W.F. ; et al.
Phys.Lett.B 243 (1990) 158-164, 1990.
Inspire Record 27474 DOI 10.17182/hepdata.29696

We report a measurement of the p p total cross section at √ s =1.8 TeV using a luminosity-independent method. Our result is σ T =72.1±3.3 mb ; we also derive the total elastic cross section σ el =16.6±1.6 mb. A value is obtained for the total single diffraction cross section of 11.7±2.3 mb.

0 data tables match query

Anti-proton - proton elastic scattering at s**(1/2) = 1020-GeV

The E710 collaboration Amos, Norman A. ; Avila, C. ; Baker, W.F. ; et al.
Nuovo Cim.A 106 (1993) 123-132, 1993.
Inspire Record 338043 DOI 10.17182/hepdata.42674

The antiproton-proton small-angle elastic-scattering distribution was measured at\(\sqrt s \) GeV at the Fermilab Tevatron Collider. A fit to the nuclear-scattering distribution in the range 0.065≤|t|≤0.21 (GeV/c)2 givesb=(16.2±0.5±0.5) (GeV/c)−2 for the logarithmic slope parameter. Using the optical theorem and the luminosity from Collider parameters, we obtain σtoto(1+ρ2)1/2 =(61.7±3.7±4.4)mb.

0 data tables match query

Anti-proton - proton elastic scattering at s**(1/2) = 1.8-TeV from |t| = 0.034-GeV/c**2 to 0.65-GeV/c**2

The E-710 collaboration Amos, Norman A. ; Avila, C. ; Baker, W.F. ; et al.
Phys.Lett.B 247 (1990) 127-130, 1990.
Inspire Record 297541 DOI 10.17182/hepdata.29660

The differential cross section for elastic antiproton—proton scattering at s =1.8 TeV has been measured over the t range 0.034⩽| t |⩽0.65 (GeV/ c ) 2 . A logarithmic slope parameter, B , of 16.3±0.3 (GeV/ c ) −2 is obtained. In contrast to lower energy experiments, no change in slope is observed over this t range.

0 data tables match query

Diffraction dissociation in anti-p p collisions at s**(1/2) = 1.8-TeV

The E710 collaboration Amos, Norman A. ; Avila, C. ; Baker, W.F. ; et al.
Phys.Lett.B 301 (1993) 313-316, 1993.
Inspire Record 342944 DOI 10.17182/hepdata.28955

We have studied single diffraction dissociation ( p p→ p X ) in proton-antiproton collisions at √ s =1.8TeV, covering the ranges 3⪅ M X ⪅200 GeV and 0.05⪅| t |⪅0.11 (GeV/ c ) 2 . Parameterizing the production to be of the form dσ ( d t d M 2 X ) = (M 2 X ) −α exp (bt) , we obtain α = 1.13±0.07 and b = 10.5±1.8(GeV/ c ) −2 . The total single diffraction dissociation cross section is 2 σ SD =8.1±1.7 mb. Comparisons are made to previous lower energy data, and to an earlier measurement by us at the same energy.

0 data tables match query

A Measurement of sigma B (W ---> e neutrino) and sigma B (Z0 ---> e+ e-) in anti-p p collisions at s**(1/2) = 1800-GeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 44 (1991) 29-52, 1991.
Inspire Record 302820 DOI 10.17182/hepdata.42696

An analysis of high-transverse-momentum electrons using data from the Collider Detector at Fermilab (CDF) of p¯p collisions at s=1800 GeV yields values of the production cross section times branching ratio for W and Z0 bosons of σ(p¯p→WX→eνX)=2.19±0.04(stat)±0.21(syst) nb and σ(p¯p→Z0X→e+e−X)=0.209±0.013(stat)±0.017(syst) nb. Detailed descriptions of the CDF electron identification, background, efficiency, and acceptance are included. Theoretical predictions of the cross sections that include a mass for the top quark larger than the W mass, current values of the W and Z0 masses, and higher-order QCD corrections are in good agreement with these measured values.

0 data tables match query

A Prompt photon cross-section measurement in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M. ; Amidei, D. ; et al.
Phys.Rev.D 48 (1993) 2998-3025, 1993.
Inspire Record 353026 DOI 10.17182/hepdata.22677

The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.

0 data tables match query