Search for additional neutral MSSM Higgs bosons in the $\tau\tau$ final state in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2018.
Inspire Record 1663234 DOI 10.17182/hepdata.83155

A search is presented for additional neutral Higgs bosons in the $\tau\tau$ final state in proton-proton collisions at the LHC. The search is performed in the context of the minimal supersymmetric extension of the standard model (MSSM), using the data collected with the CMS detector in 2016 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes production of the Higgs boson in association with b quarks. No significant deviation above the expected background is observed. Model-independent limits at 95% confidence level (CL) are set on the product of the branching fraction for the decay into $\tau$ leptons and the cross section for the production via gluon fusion or in association with b quarks. These limits range from 18 pb at 90 GeV to 3.5 fb at 3.2 TeV for gluon fusion and from 15 pb (at 90 GeV) to 2.5 fb (at 3.2 TeV) for production in association with b quarks. In the m$_{\text{h}}^{\text{mod+}}$ scenario these limits translate into a 95% CL exclusion of $\tan\beta>$ 6 for neutral Higgs boson masses below 250 GeV, where $\tan\beta$ is the ratio of the vacuum expectation values of the neutral components of the two Higgs doublets. The 95% CL exclusion contour reaches 1.6 TeV for $\tan\beta=$ 60.

0 data tables match query

Observation of $\mathrm{t\overline{t}}$H production

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 231801, 2018.
Inspire Record 1666824 DOI 10.17182/hepdata.83809

The observation of Higgs boson production in association with a top quark-antiquark pair is reported, based on a combined analysis of proton-proton collision data at center-of-mass energies of s=7, 8, and 13 TeV, corresponding to integrated luminosities of up to 5.1, 19.7, and 35.9  fb-1, respectively. The data were collected with the CMS detector at the CERN LHC. The results of statistically independent searches for Higgs bosons produced in conjunction with a top quark-antiquark pair and decaying to pairs of W bosons, Z bosons, photons, τ leptons, or bottom quark jets are combined to maximize sensitivity. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The corresponding expected significance from the standard model for a Higgs boson mass of 125.09 GeV is 4.2 standard deviations. The combined best fit signal strength normalized to the standard model prediction is 1.26-0.26+0.31.

0 data tables match query

Measurement of the top quark mass with lepton+jets final states using $\mathrm {p}$ $\mathrm {p}$ collisions at $\sqrt{s}=13\,\text {TeV} $

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J. C78 (2018) 891, 2018.
Inspire Record 1671499 DOI 10.17182/hepdata.85702

The mass of the top quark is measured using a sample of ${{\text {t}}\overline{{\text {t}}}}$ events collected by the CMS detector using proton-proton collisions at $\sqrt{s}=13$ $\,\text {TeV}$ at the CERN LHC. Events are selected with one isolated muon or electron and at least four jets from data corresponding to an integrated luminosity of 35.9 $\,\text {fb}^{-1}$ . For each event the mass is reconstructed from a kinematic fit of the decay products to a ${{\text {t}}\overline{{\text {t}}}}$ hypothesis. Using the ideogram method, the top quark mass is determined simultaneously with an overall jet energy scale factor (JSF), constrained by the mass of the W boson in ${\text {q}} \overline{{\text {q}}} ^\prime $ decays. The measurement is calibrated on samples simulated at next-to-leading order matched to a leading-order parton shower. The top quark mass is found to be $172.25 \pm 0.08\,\text {(stat+JSF)} \pm 0.62\,\text {(syst)} \,\text {GeV} $ . The dependence of this result on the kinematic properties of the event is studied and compared to predictions of different models of ${{\text {t}}\overline{{\text {t}}}}$ production, and no indications of a bias in the measurements are observed.

0 data tables match query

Search for new particles decaying to a jet and an emerging jet

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1902 (2019) 179, 2019.
Inspire Record 1700173 DOI 10.17182/hepdata.88380

A search is performed for events consistent with the pair production of a new heavy particle that acts as a mediator between a dark sector and normal matter, and that decays to a light quark and a new fermion called a dark quark. The search is based on data corresponding to an integrated luminosity of 16.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS experiment at the LHC in 2016. The dark quark is charged only under a new quantum-chromodynamics-like force, and forms an "emerging jet" via a parton shower, containing long-lived dark hadrons that give rise to displaced vertices when decaying to standard model hadrons. The data are consistent with the expectation from standard model processes. Limits are set at 95% confidence level excluding dark pion decay lengths between 5 and 225 mm for dark mediators with masses between 400 and 1250 GeV. Decay lengths smaller than 5 mm and greater than 225 mm are also excluded in the lower part of this mass range. The dependence of the limit on the dark pion mass is weak for masses between 1 and 10 GeV. This analysis is the first dedicated search for the pair production of a new particle that decays to a jet and an emerging jet.

0 data tables match query

Search for long-lived particles decaying into displaced jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev. D99 (2019) 032011, 2019.
Inspire Record 1704319 DOI 10.17182/hepdata.88880

A search for long-lived particles decaying into jets is presented. Data were collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9  fb-1. The search examines the distinctive topology of displaced tracks and secondary vertices. The selected events are found to be consistent with standard model predictions. For a simplified model in which long-lived neutral particles are pair produced and decay to two jets, pair production cross sections larger than 0.2 fb are excluded at 95% confidence level for a long-lived particle mass larger than 1000 GeV and proper decay lengths between 3 and 130 mm. Several supersymmetry models with gauge-mediated supersymmetry breaking or R-parity violation, where pair-produced long-lived gluinos or top squarks decay to several final-state topologies containing displaced jets, are also tested. For these models, in the mass ranges above 200 GeV, gluino masses up to 2300–2400 GeV and top squark masses up to 1350–1600 GeV are excluded for proper decay lengths approximately between 10 and 100 mm. These are the most restrictive limits to date on these models.

0 data tables match query

Measurement and interpretation of differential cross sections for Higgs boson production at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B792 (2019) 369-396, 2019.
Inspire Record 1709330 DOI 10.17182/hepdata.89936

Differential Higgs boson (H) production cross sections are sensitive probes for physics beyond the standard model. New physics may contribute in the gluon-gluon fusion loop, the dominant Higgs boson production mechanism at the LHC, and manifest itself through deviations from the distributions predicted by the standard model. Combined spectra for the H $\to$ $\gamma\gamma$, H $\to$ ZZ, and H $\to$ $\mathrm{b\overline{b}}$ decay channels and the inclusive Higgs boson production cross section are presented, based on proton-proton collision data recorded with the CMS detector at $\sqrt{s} =$ 13 TeV corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The transverse momentum spectrum is used to place limits on the Higgs boson couplings to the top, bottom, and charm quarks, as well as its direct coupling to the gluon field. No significant deviations from the standard model are observed in any differential distribution. The measured total cross section is 61.1 $\pm$ 6.0 (stat) $\pm$ 3.7 (syst) pb, and the precision of the measurement of the differential cross section of the Higgs boson transverse momentum is improved by about 15% with respect to the H $\to$ $\gamma\gamma$ channel alone.

0 data tables match query

Search for MSSM Higgs bosons decaying to $\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1742776 DOI 10.17182/hepdata.90684

A search is performed for neutral non-standard-model Higgs bosons decaying to two muons in the context of the minimal supersymmetric standard model (MSSM). Proton-proton collision data recorded by the CMS experiment at the CERN Large Hadron Collider at a center-of-mass energy of 13 TeV were used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search is sensitive to neutral Higgs bosons produced via the gluon fusion process or in association with a $\mathrm{b\overline{b}}$ quark pair. No significant deviations from the standard model expectation are observed. Upper limits at 95% confidence level are set in the context of the $m_\mathrm{h}^{\text{mod+}}$ and phenomenological MSSM scenarios on the parameter $\tan\beta$ as a function of the mass of the pseudoscalar A boson, in the range from 130 to 600 GeV. The results are also used to set a model-independent limit on the product of the branching fraction for the decay into a muon pair and the cross section for the production of a scalar neutral boson, either via gluon fusion, or in association with b quarks, in the mass range from 130 to 1000 GeV.

0 data tables match query

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two $\tau$ leptons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B785 (2018) 462, 2018.
Inspire Record 1674926 DOI 10.17182/hepdata.86228

A search for an exotic decay of the Higgs boson to a pair of light pseudoscalar bosons is performed for the first time in the final state with two b quarks and two $\tau$ leptons. The search is motivated in the context of models of physics beyond the standard model (SM), such as two Higgs doublet models extended with a complex scalar singlet (2HDM+S), which include the next-to-minimal supersymmetric SM (NMSSM). The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV. Masses of the pseudoscalar boson between 15 and 60 GeV are probed, and no excess of events above the SM expectation is observed. Upper limits between 3 and 12% are set on the branching fraction $\mathcal{B}$(h $\to$ aa $\to$ 2$\tau$2b) assuming the SM production of the Higgs boson. Upper limits are also set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different 2HDM+S scenarios. Assuming the SM production cross section for the Higgs boson, the upper limit on this quantity is as low as 20% for a mass of the pseudoscalar of 40 GeV in the NMSSM.

0 data tables match query

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two $\tau$ leptons in proton-proton collisions at $ \sqrt{s}=13 $ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1811 (2018) 018, 2018.
Inspire Record 1673011 DOI 10.17182/hepdata.85886

A search for exotic Higgs boson decays to light pseudoscalars in the final state of two muons and two $\tau$ leptons is performed using proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Masses of the pseudoscalar boson between 15.0 and 62.5 GeV are probed, and no significant excess of data is observed above the prediction of the standard model. Upper limits are set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different types of two-Higgs-doublet models extended with a complex scalar singlet.

0 data tables match query

Measurement of the top quark mass in the all-jets final state at $\sqrt{s} =$ 13 TeV and combination with the lepton+jets channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J. C79 (2019) 313, 2019.
Inspire Record 1711672 DOI 10.17182/hepdata.89051

A top quark mass measurement is performed using $35.9{\,\text {fb}^{-1}} $ of LHC proton–proton collision data collected with the CMS detector at $\sqrt{s}=13\,\text {TeV} $ . The measurement uses the ${\mathrm {t}\overline{\mathrm {t}}}$ all-jets final state. A kinematic fit is performed to reconstruct the decay of the ${\mathrm {t}\overline{\mathrm {t}}}$  system and suppress the multijet background. Using the ideogram method, the top quark mass ( $m_{\mathrm {t}}$ ) is determined, simultaneously constraining an additional jet energy scale factor ( $\text {JSF}$ ). The resulting value of $m_{\mathrm {t}} =172.34\pm 0.20\,\text {(stat+JSF)} \pm 0.70\,\text {(syst)} \,\text {GeV} $ is in good agreement with previous measurements. In addition, a combined measurement that uses the ${\mathrm {t}\overline{\mathrm {t}}}$ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an $m_{\mathrm {t}}$ measurement of $172.26\pm 0.07\,\text {(stat+JSF)} \pm 0.61\,\text {(syst)} \,\text {GeV} $ . This is the first combined $m_{\mathrm {t}}$ extraction from the lepton+jets and all-jets channels through a single likelihood function.

0 data tables match query

Search for beyond the standard model Higgs bosons decaying into a $\mathrm{b\overline{b}}$ pair in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1808 (2018) 113, 2018.
Inspire Record 1675818 DOI 10.17182/hepdata.86133

A search for Higgs bosons that decay into a bottom quark-antiquark pair and are accompanied by at least one additional bottom quark is performed with the CMS detector. The data analyzed were recorded in proton-proton collisions at a centre-of-mass energy of $ \sqrt{s}=13 $ TeV at the LHC, corresponding to an integrated luminosity of 35.7 fb$^{−1}$. The final state considered in this analysis is particularly sensitive to signatures of a Higgs sector beyond the standard model, as predicted in the generic class of two Higgs doublet models (2HDMs). No signal above the standard model background expectation is observed. Stringent upper limits on the cross section times branching fraction are set for Higgs bosons with masses up to 1300 GeV. The results are interpreted within several MSSM and 2HDM scenarios.

0 data tables match query

Measurement of electroweak WZ boson production and search for new physics in WZ $+$ two jets events in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1713565 DOI 10.17182/hepdata.89174

A measurement of WZ electroweak (EW) vector boson scattering is presented. The measurement is performed in the leptonic decay modes WZ$\to \ell\nu\ell'\ell'$, where $\ell, \ell' = $e, $\mu$. The analysis is based on a data sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC collected with the CMS detector and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The WZ plus two jet production cross section is measured in fiducial regions with enhanced contributions from EW production and found to be consistent with standard model predictions. The EW WZ production in association with two jets is measured with an observed (expected) significance of 2.2 (2.5) standard deviations. Constraints on charged Higgs boson production and on anomalous quartic gauge couplings in terms of dimension-eight effective field theory operators are also presented.

0 data tables match query

Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying $\tau$ leptons at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1808 (2018) 066, 2018.
Inspire Record 1662661 DOI 10.17182/hepdata.84635

Results of a search for the standard model Higgs boson produced in association with a top quark pair ($\mathrm{t\overline{t}}$H) in final states with electrons, muons, and hadronically decaying $\tau$ leptons are presented. The analyzed data set corresponds to an integrated luminosity of 35.9 fb$^{-1}$ recorded in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS experiment in 2016. The sensitivity of the search is improved by using matrix element and machine learning methods to separate the signal from backgrounds. The measured signal rate amounts to 1.23 $^{+0.45}_{-0.43}$ times the production rate expected in the standard model, with an observed (expected) significance of 3.2$\sigma$ (2.8$\sigma$), which represents evidence for $\mathrm{t\overline{t}}$H production in those final states. An upper limit on the signal rate of 2.1 times the standard model production rate is set at 95% confidence level.

0 data tables match query

Search for charged Higgs bosons in the H$^{\pm}$ $\to$ $\tau^{\pm}\nu_\tau$ decay channel in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1907 (2019) 142, 2019.
Inspire Record 1724676 DOI 10.17182/hepdata.90687

A search is presented for charged Higgs bosons in the H$^{±}$ → τ$^{±}$ν$_{τ}$ decay mode in the hadronic final state and in final states with an electron or a muon. The search is based on proton-proton collision data recorded by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{−1}$. The results agree with the background expectation from the standard model. Upper limits at 95% confidence level are set on the production cross section times branching fraction to τ$^{±}$ν$_{τ}$ for an H$^{±}$ in the mass range of 80GeV to 3TeV, including the region near the top quark mass. The observed limit ranges from 6 pb at 80 GeV to 5 fb at 3 TeV. The limits are interpreted in the context of the minimal supersymmetric standard model m$_{h}^{hod −}$ scenario.

0 data tables match query

Observation of Two Excited B$^+_\mathrm{c}$ States and Measurement of the B$^+_\mathrm{c}$(2S) Mass in pp Collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 132001, 2019.
Inspire Record 1718338 DOI 10.17182/hepdata.88919

Signals consistent with the B$^+_\mathrm{c}$(2S) and B$^{*+}_\mathrm{c}$(2S) states are observed in proton-proton collisions at $\sqrt{s} =$ 13 TeV, in an event sample corresponding to an integrated luminosity of 140 fb$^{-1}$, collected by the CMS experiment during the 2016, 2017, and 2018 LHC running periods. These excited $\bar{\mathrm{b}}$c states are observed in the B$^+_\mathrm{c}\pi^+\pi^-$ invariant mass spectrum, with the ground state B$^+_\mathrm{c}$ reconstructed through its decay to J/$\psi\,\pi^+$. The two states are well resolved from each other and are observed with a significance exceeding five standard deviations. The mass of the B$^+_\mathrm{c}$(2S) meson is measured to be 6871.0 $\pm$ 1.2 (stat) $\pm$ 0.8 (syst) $\pm$ 0.8 (B$^+_\mathrm{c}$) MeV, where the last term corresponds to the uncertainty in the world-average B$^+_\mathrm{c}$ mass.

0 data tables match query

Observation of the $\chi_\mathrm{b1}$(3P) and $\chi_\mathrm{b2}$(3P) and measurement of their masses

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 092002, 2018.
Inspire Record 1675256 DOI 10.17182/hepdata.85742

The $\chi_\mathrm{b1}$(3P) and $\chi_\mathrm{b2}$(3P) states are observed through their $\Upsilon$(3S) $\gamma$ decays, using an event sample of proton-proton collisions collected by the CMS experiment at the CERN LHC. The data were collected at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 80.0 fb$^{-1}$. The $\Upsilon$(3S) mesons are identified through their dimuon decay channel, while the low-energy photons are detected after converting to e$^+$e$^-$ pairs in the silicon tracker, leading to a $\chi_\mathrm{b}$(3P) mass resolution of 2.2 MeV. This is the first time that the $J =$ 1 and 2 states are well resolved and their masses individually measured: 10$\,$513.42 $\pm$ 0.41 (stat) $\pm$ 0.18 (syst) MeV and 10$\,$524.02 $\pm$ 0.57 (stat) $\pm$ 0.18 (syst) MeV; they are determined with respect to the world-average value of the $\Upsilon$(3S) mass, which has an uncertainty of 0.5 MeV. The mass splitting is measured to be 10.60 $\pm$ 0.64 (stat) $\pm$ 0.17 (syst) MeV.

0 data tables match query

Measurements of $\mathrm{t\overline{t}}$ differential cross sections in proton-proton collisions at $\sqrt{s}=$ 13 TeV using events containing two leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1902 (2019) 149, 2019.
Inspire Record 1703993 DOI 10.17182/hepdata.89307

Measurements of differential top quark pair $ \mathrm{t}\overline{\mathrm{t}} $ cross sections using events produced in proton-proton collisions at a centre-of-mass energy of 13 TeV containing two oppositely charged leptons are presented. The data were recorded by the CMS experiment at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{−1}$. The differential cross sections are presented as functions of kinematic observables of the top quarks and their decay products, the $ \mathrm{t}\overline{\mathrm{t}} $ system, and the total number of jets in the event. The differential cross sections are defined both with particle-level objects in a fiducial phase space close to that of the detector acceptance and with parton-level top quarks in the full phase space. All results are compared with standard model predictions from Monte Carlo simulations with next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD) at matrix-element level interfaced to parton-shower simulations. Where possible, parton-level results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $ \mathrm{t}\overline{\mathrm{t}} $ and leptonic charge asymmetries.

0 data tables match query

Search for the associated production of the Higgs boson and a vector boson in proton-proton collisions at $\sqrt{s}=$ 13 TeV via Higgs boson decays to $\tau$ leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP, 2018.
Inspire Record 1693616 DOI 10.17182/hepdata.87257

A search for the standard model Higgs boson, decaying to a pair of $\tau$ leptons and produced in association with a W or a Z boson is performed. A data sample of proton-proton collisions collected at $\sqrt{s} =$ 13 TeV by the CMS experiment at the CERN LHC is used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The signal strength is measured relative to the expectation for the standard model Higgs boson, yielding $\mu =$ 2.5$^{+1.4} _{-1.3}$. These results are combined with earlier CMS measurements targeting Higgs boson decays to a pair of $\tau$ leptons, performed with the same data set in the gluon fusion and vector boson fusion production modes. The combined signal strength is $\mu =$ 1.24$ ^{+0.29} _{-0.27}$ (1.00$^{+0.24} _{-0.23}$ expected), and the observed significance is 5.5 standard deviations (4.8 expected) for a Higgs boson mass of 125 GeV.

0 data tables match query

Observation of Higgs boson decay to bottom quarks

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 121801, 2018.
Inspire Record 1691854 DOI 10.17182/hepdata.86132

The observation of the standard model (SM) Higgs boson decay to a pair of bottom quarks is presented. The main contribution to this result is from processes in which Higgs bosons are produced in association with a W or Z boson (VH), and are searched for in final states including 0, 1, or 2 charged leptons and two identified bottom quark jets. The results from the measurement of these processes in a data sample recorded by the CMS experiment in 2017, comprising 41.3  fb-1 of proton-proton collisions at s=13  TeV, are described. When combined with previous VH measurements using data collected at s=7, 8, and 13 TeV, an excess of events is observed at mH=125  GeV with a significance of 4.8 standard deviations, where the expectation for the SM Higgs boson is 4.9. The corresponding measured signal strength is 1.01±0.22. The combination of this result with searches by the CMS experiment for H→bb¯ in other production processes yields an observed (expected) significance of 5.6 (5.5) standard deviations and a signal strength of 1.04±0.20.

0 data tables match query

Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1744267 DOI 10.17182/hepdata.90694

A search is presented for pairs of light pseudoscalar bosons, in the mass range from 4 to 15 GeV, produced from decays of the 125 GeV Higgs boson. The decay modes considered are final states that arise when one of the pseudoscalars decays to a pair of tau leptons, and the other one either into a pair of tau leptons or muons. The search is based on proton-proton collisions collected by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV that correspond to an integrated luminosity of 35.9 fb${-1}$. The 2$\mu$2$\tau$ and 4$\tau$ channels are used in combination to constrain the product of the Higgs boson production cross section and the branching fraction into 4$\tau$ final state, $\sigma\mathcal{B}$, exploiting the linear dependence of the fermionic coupling strength of pseudoscalar bosons on the fermion mass. No significant excess is observed beyond the expectation from the standard model. The observed and expected upper limits at 95% confidence level on $\sigma\mathcal{B}$, relative to the standard model Higgs boson production cross section, are set respectively between 0.022 and 0.23 and between 0.027 and 0.19 in the mass range probed by the analysis.

0 data tables match query

Version 2
Search for long-lived particles using nonprompt jets and missing transverse momentum with proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B797 (2019) 134876, 2019.
Inspire Record 1740108 DOI 10.17182/hepdata.90583

A search for long-lived particles decaying to displaced, nonprompt jets and missing transverse momentum is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC in 2016-2018. Candidate signal events containing nonprompt jets are identified using the timing capabilities of the CMS electromagnetic calorimeter. The results of the search are consistent with the background prediction and are interpreted using a gauge-mediated supersymmetry breaking reference model with a gluino next-to-lightest supersymmetric particle. In this model, gluino masses up to 2100, 2500, and 1900 GeV are excluded at 95% confidence level for proper decay lengths of 0.3, 1, and 100 m, respectively. These are the best limits to date for such massive gluinos with proper decay lengths greater than $\sim$0.5 m.

0 data tables match query

Search for $W$ boson decays to three charged pions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 151802, 2019.
Inspire Record 1717867 DOI 10.17182/hepdata.90000

For the first time, a search for the rare decay of the W boson to three charged pions has been performed. Proton-proton collision data recorded by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 77.3  fb-1, have been analyzed. No significant excess is observed above the background expectation. An upper limit of 1.01×10-6 is set at 95% confidence level on the branching fraction of the W boson to three charged pions. This provides a strong motivation for theoretical calculations of this branching fraction.

0 data tables match query

Measurement of the ZZ production cross section and Z $\to \ell^+\ell^-\ell'^+\ell'^-$ branching fraction in pp collisions at $\sqrt s$=13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B763 (2016) 280-303, 2016.
Inspire Record 1478600 DOI 10.17182/hepdata.75368

Four-lepton production in proton-proton collisions, pp to (Z/gamma*)(Z/gamma*) to l+l-l'+l'-, where l, l' = e or mu, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.6 inverse femtobarns. The ZZ production cross section, sigma(pp to ZZ) = 14.6 +1.9/-1.8 (stat) +0.5/-0.3 (syst) +/- 0.2 (theo) +/- 0.4 (lumi) pb, is measured for events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 < m[l+l-], m[l'+l'-] < 120 GeV. The Z boson branching fraction to four leptons is measured to be B(Z to l+l-l'+l'-) = 4.9 +0.8/-0.7 (stat) +0.3/-0.2 (syst) +0.2/-0.1 (theo) +/- 0.1 (lumi) x E-6 for the four-lepton invariant mass in the range 80 < m[l+l-l'+l'-] < 100 GeV and dilepton mass m[l+l-] > 4 GeV for all opposite-sign, same-flavor lepton pairs. The results are in agreement with standard model predictions.

0 data tables match query

Search for supersymmetry in pp collisions at $ \sqrt{s}=13 $ TeV in the single-lepton final state using the sum of masses of large-radius jets

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 1608 (2016) 122, 2016.
Inspire Record 1459054 DOI 10.17182/hepdata.77195

Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single, high transverse momentum lepton, multiple jets, including at least one b-tagged jet, and large missing transverse momentum. The data sample corresponds to an integrated luminosity of 2.3 fb$^{−1}$ at $ \sqrt{s}=13 $ TeV, recorded by the CMS experiment at the LHC. The search focuses on processes leading to high jet multiplicities, such as gluino pair production with $ \tilde{\mathrm{g}}\to \mathrm{t}\overline{\mathrm{t}}{\tilde{\chi}}_1^0 $ . The quantity M$_{J}$ , defined as the sum of the masses of the large-radius jets in the event, is used in conjunction with other kinematic variables to provide discrimination between signal and background and as a key part of the background estimation method. The observed event yields in the signal regions in data are consistent with those expected for standard model backgrounds, estimated from control regions in data. Exclusion limits are obtained for a simplified model corresponding to gluino pair production with three-body decays into top quarks and neutralinos. Gluinos with a mass below 1600 GeV are excluded at a 95% confidence level for scenarios with low $ {\tilde{\chi}}_1^0 $ mass, and neutralinos with a mass below 800 GeV are excluded for a gluino mass of about 1300 GeV. For models with two-body gluino decays producing on-shell top squarks, the excluded region is only weakly sensitive to the top squark mass.

0 data tables match query

Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at $ \sqrt{s}=13 $ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1712 (2017) 142, 2017.
Inspire Record 1610629 DOI 10.17182/hepdata.79807

A search for physics beyond the standard model in final states with at least one photon, large transverse momentum imbalance, and large total transverse event activity is presented. Such topologies can be produced in gauge-mediated supersymmetry models in which pair-produced gluinos or squarks decay to photons and gravitinos via short-lived neutralinos. The data sample corresponds to an integrated luminosity of 35.9 inverse femtobarns of proton-proton collisions at sqrt(s) = 13 TeV recorded by the CMS experiment at the LHC in 2016. No significant excess of events above the expected standard model background is observed. The data are interpreted in simplified models of gluino and squark pair production, in which gluinos or squarks decay via neutralinos to photons. Gluino masses of up to 1.50-2.00 TeV and squark masses up to 1.30-1.65 TeV are excluded at 95% confidence level, depending on the neutralino mass and branching fraction.

0 data tables match query