Charm production studies at CDF

The CDF collaboration Reisert, B. ; Lewis, J. ; Liu, T. ; et al.
Nucl.Phys.B Proc.Suppl. 170 (2007) 243-247, 2007.
Inspire Record 766572 DOI 10.17182/hepdata.65519

The upgraded Collider Detector at Fermilab (CDF II) has a high bandwidth available for track based triggers. This capability in conjunction with the unprecedented integrated luminosity in excess of 1 fb −1 enables detailed studies of charm hadron production. CDF is now releasing first measurements of the prompt charm meson pair cross sections, which give access to QCD mechanisms by which charm quarks are produced in proton anti-proton collisions. Recent results on the spin alignment of J/ψ and ψ(2S) as well as on the relative production of the χc1(P1) and χc2(1P) challenge our understanding of the fragmentation of charm quarks into charmonium states.

0 data tables match query

Measurement of the B cross-section at CDF via B semileptonic decays

The CDF collaboration Lewis, Jonathan ;
0795-799, 1994.
Inspire Record 379275 DOI 10.17182/hepdata.43048

None

0 data tables match query

Measurement of the dijet mass distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M. ; Amidei, D. ; et al.
Phys.Rev.D 48 (1993) 998-1008, 1993.
Inspire Record 353889 DOI 10.17182/hepdata.22573

The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.

0 data tables match query

The Two jet invariant mass distribution at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 41 (1990) 1722-1725, 1990.
Inspire Record 288745 DOI 10.17182/hepdata.23056

We present the dijet invariant-mass distribution in the region between 60 and 500 GeV, measured in 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. Jets are restricted to the pseudorapidity interval |η|<0.7. Data are compared with QCD calculations; axigluons are excluded with 95% confidence in the region 120<MA<210 GeV for axigluon width ΓA=NαsMA6, with N=5.

0 data tables match query

Measurement of the Inclusive Jet Cross-Section in anti-p p Collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 62 (1989) 613, 1989.
Inspire Record 267999 DOI 10.17182/hepdata.20032

Inclusive jet production at s=1.8 TeV has been measured in the CDF detector at the Fermilab Tevatron p¯p Collider. Jets with transverse energies (Et) up to 250 GeV have been observed. The Et dependence of the inclusive jet cross section is consistent with leading-order quantum-chromodynamic calculations, and comparison with lower-energy data shows deviations from scaling consistent with QCD. A lower limit of 700 GeV (95% confidence level) is placed on the quark compositeness scale parameter Λc associated with an effective contact interaction.

0 data tables match query

The Charge asymmetry in W boson decays produced in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 74 (1995) 850-854, 1995.
Inspire Record 379592 DOI 10.17182/hepdata.42427

The charge asymmetry has been measured using $19,039W$ decays recorded by the CDF detector during the 1992-93 run of the Tevatron Collider. The asymmetry is sensitive to the ratio of $d$ and $u$ quark distributions to $x<0.01$ at $Q~2 \approx M_W~2$, where nonperturbative effects are minimal. It is found that of the two current sets of parton distributions, those of Martin, Roberts and Stirling (MRS) are favored over the sets most recently produced by the CTEQ collaboration. The $W$ asymmetry data provide a stronger constraints on $d/u$ ratio than the recent measurements of $F_2~{\mu n}/F_2~{\mu p}$ which are limited by uncertainties originating from deutron corrections.

0 data tables match query

Upsilon production in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 4358, 1995.
Inspire Record 398187 DOI 10.17182/hepdata.42349

We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential, (d2σdPtdy)y=0, and integrated cross sections in pp¯ collisions at s=1.8 TeV using a sample of 16.6 ± 0.6 pb−1 collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. Comparison is made to a leading order QCD prediction.

0 data tables match query

Measurement of the B meson differential cross-section, d sigma / d p(T), in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 1451-1455, 1995.
Inspire Record 393552 DOI 10.17182/hepdata.42432

This paper presents the first direct measurement of the $B$ meson differential cross section, $d\sigma/dp_T$, in $p\overline{p}$ collisions at $\sqrt{s}=1.8$ TeV using a sample of $19.3 \pm 0.7$ pb$~{-1}$ accumulated by the Collider Detector at Fermilab (CDF). The cross section is measured in the central rapidity region $|y| < 1$ for $p_T(B) > 6.0$ GeV/$c$ by fully reconstructing the $B$ meson decays $B~{+}\rightarrow J/\psi K~{+}$ and $B~{0}\rightarrow J/\psi K~{*0}(892)$, where $J/\psi \rightarrow \mu~+\mu~-$ and $K~{*0} \rightarrow K~+ \pi~-$. A comparison is made to the theoretical QCD prediction calculated at next-to-leading order.

0 data tables match query

Transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson region from $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 86 (2012) 052010, 2012.
Inspire Record 1124333 DOI 10.17182/hepdata.60522

The transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson mass region of 66-116 GeV/$c^2$ is precisely measured using Run II data corresponding to 2.1 fb$^{-1}$ of integrated luminosity recorded by the Collider Detector at Fermilab. The cross section is compared with quantum chromodynamic calculations. One is a fixed-order perturbative calculation at ${\cal O}(\alpha_s^2)$, and the other combines perturbative predictions at high transverse momentum with the gluon resummation formalism at low transverse momentum. Comparisons of the measurement with calculations show reasonable agreement. The measurement is of sufficient precision to allow refinements in the understanding of the transverse momentum distribution.

0 data tables match query

Measurement of the Differential Cross Section $d{\sigma}/d(\cos {\theta}t)$ for Top-Quark Pair Production in $p-\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 111 (2013) 182002, 2013.
Inspire Record 1238100 DOI 10.17182/hepdata.64392

We report a measurement of the differential cross section, d{\sigma}/d(cos {\theta}t), for top-quark-pair production as a function of the top-quark production angle in proton-antiproton collisions at sqrt{s} = 1.96 TeV. This measurement is performed using data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.4/fb. We employ the Legendre polynomials to characterize the shape of the differential cross section at the parton level. The observed Legendre coefficients are in good agreement with the prediction of the next-to-leading-order standard-model calculation, with the exception of an excess linear-term coefficient, a1 = 0.40 +- 0.12, compared to the standard-model prediction of a1 = 0.15^{+0.07}_{-0.03}.

0 data tables match query