A Comparison of the Shapes of pi+ p and p p Diffraction Peaks from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, Robert E. ; Maclay, G.J. ; et al.
Phys.Rev.Lett. 37 (1976) 548, 1976.
Inspire Record 108238 DOI 10.17182/hepdata.21073

The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.

0 data tables match query

Measurement of the polarization parameter in backward pi+ p elastic scattering at 1.60, 1.80, 2.11, and 2.31 gev/c

Burleson, G. ; Hill, D. ; Kato, S. ; et al.
Phys.Rev.Lett. 26 (1971) 338-340, 1971.
Inspire Record 69051 DOI 10.17182/hepdata.21558

Measurements of polarization in π+p elastic scattering have been made at 1.60, 1.80, 2.11, and 2.31 GeVc. The data cover the entire angular range, with emphasis on the backward region. Comparisons have been made with both u-channel and t-channel models, as well as with predictions of phase-shift analyses. While the agreement is generally poor in all cases, the best agreement is with some t-channel predictions.

0 data tables match query

The Energy Dependence of Backward $\pi^+ p$ Elastic Scattering from 2 GeV/c to 6 GeV/c

Baker, W.F. ; Eartly, David P. ; Pretzl, K. ; et al.
Phys.Rev.Lett. 32 (1974) 251, 1974.
Inspire Record 80709 DOI 10.17182/hepdata.21310

The energy dependence of backward π+p elastic scattering has been measured for incident π momenta 2.0-6.0 GeV/c in steps of typically 100 MeV/c. Values are presented for both the differential cross section extrapolated to 180° and the slope of the backward peak as a function of momentum. In the s channel we see the effects of the established Δ++ resonances and evidence for the Δ(3230). Also, the data show the existence of a negative-parity Δ resonance with mass ∼2200 MeV/c2.

0 data tables match query

Measurement of Elastic Scattering of Hadrons on Protons from 50-GeV/c to 175-GeV/c

Group, Fermilab Single Arm Spectrometer ;
Phys.Rev.Lett. 35 (1975) 1195, 1975.
Inspire Record 98699 DOI 10.17182/hepdata.21217

Differential cross sections have been measured at Fermilab with a focusing spectrometer for π±p, K±p, and p±p elastic scattering at 50-, 70-, 100-, 140-, and 175-GeV/c incident momentum over the |t| range 0.03 to 0.8 GeV2. The results are smooth in t and are parametrized by quadratic exponential fits.

0 data tables match query

Elastic Scattering of Hadrons at 50-GeV to 200-GeV

Akerlof, C.W. ; Kotthaus, R. ; Loveless, R.L. ; et al.
Phys.Rev.Lett. 35 (1975) 1406, 1975.
Inspire Record 2687 DOI 10.17182/hepdata.21194

The differential cross section for π±, K±, and p± on hydrogen have been measured in the range 0.07<−t<1.6 (GeV/c)2. The dependence on momentum, momentum, transfer, and particle type are discussed.

0 data tables match query

Measurement of the pi+ p and pi- p Polarization Parameters at 100-GeV/c

Auer, I.P. ; Hill, D. ; Sandler, B. ; et al.
Phys.Rev.Lett. 39 (1977) 313, 1977.
Inspire Record 121138 DOI 10.17182/hepdata.20982

We report measurements of the polarization parameters in π+p and π−p elastic scattering at an incident momentum of 100 GeV/c. The results cover the range 0.18<~−t<~1.4 GeV2 and are in agreement with current Regge-model predictions.

0 data tables match query

Hadron-Proton Elastic Scattering at 50-GeV/c, 100-GeV/c and 200-GeV/c Momentum

Akerlof, C.W. ; Kotthaus, R. ; Loveless, R.L. ; et al.
Phys.Rev.D 14 (1976) 2864, 1976.
Inspire Record 3655 DOI 10.17182/hepdata.24693

Elastic scattering of hadrons on protons has been measured at momenta of 50, 100, and 200 GeV/c. The meson-proton scattering is found to be independent of momentum and meson type for −t>0.8 (GeV/c)2. The momentum dependence of the pp dip at −t=1.4 (GeV/c)2 was investigated. Slope parameters are given.

0 data tables match query

$\pi^{\pm} p$, $K^{\pm} p$, $pp$ and $p\bar{p}$ Elastic Scattering from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, R. ; Maclay, G.J. ; et al.
Phys.Rev.D 15 (1977) 3105, 1977.
Inspire Record 110409 DOI 10.17182/hepdata.24653

The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.

0 data tables match query

The Slope of Forward Elastic pi+ p Scattering from 4.4-GeV/c to 6.0-GeV/c

Rey, C.A. ; Poirier, J.A. ; Lennox, Arlene J. ; et al.
Phys.Rev.D 15 (1977) 59, 1977.
Inspire Record 109729 DOI 10.17182/hepdata.24605

Angular distributions for π+p→π+p were measured for 13 incident-pion momenta from 4.4 to 6.0 GeV/c and for −t less than ∼0.1 (GeV/c)2. This experiment was performed at the Zero Gradient Synchrotron of Argonne National Laboratory, where a focusing magnetic spectrometer and a scintillation-counter hodoscope were used. In fitting the angular distributions the strong-interaction contribution was parameterized by an exponential form exp(bt); the Coulomb interference was also included. The resulting values of the slope parameter for |t|<∼0.1 (GeV/c)2 are presented for each incident beam momentum.

0 data tables match query

$\pi^+ p$ Backward Elastic Scattering from 2-GeV/c to 6-GeV/c

Lennox, Arlene J. ; Baker, W.F. ; Eartly, David P. ; et al.
Phys.Rev.D 11 (1975) 1777, 1975.
Inspire Record 90923 DOI 10.17182/hepdata.24918

The backward angular distributions obtained in an experiment at the Zero Gradient Synchrotron of Argonne National Laboratory were used to systematically study the energy dependence of the 180° differential cross section for π+p elastic scattering in the center-of-mass energy region from 2159 to 3487 MeV. At each of 38 incident pion momenta between 2.0 and 6.0 GeV/c, a focusing spectrometer and scintillation counter hodoscopes were used to obtain differential cross sections for typically five pion scattering angles from 141° to 173° in the laboratory. Values for dσdΩ at 180° were then obtained by extrapolation. A resonance model and an interference model were used to perform fits to the energy dependence of dσdΩ (180°). Both models led to good fits to our data and yielded values for the masses, widths, parities, and the product of spin and elasticity for the Δ(2200), Δ(2420), Δ(2850), and Δ(3230) resonances. Our data confirm the existence of the Δ(3230) and require the negative-parity Δ(2200).

0 data tables match query

Large Momentum Transfer Elastic Scattering of $\pi^{\pm}, K^{\pm}$, and $\rho^{\pm}$ on Protons at 100 GeV/c and 200 GeV/c

Rubinstein, R. ; Baker, W.F. ; Eartly, David P. ; et al.
Phys.Rev.D 30 (1984) 1413, 1984.
Inspire Record 202682 DOI 10.17182/hepdata.23648

Results are presented on π±p, K±p, and p±p elastic scattering measured with an apparatus having acceptance of 0.5<−t<2.5 (GeV/c)2 and 0.9<−t<11 (GeV/c)2 at 100 and 200 GeV/c, respectively. A diffractionlike dip is seen for the first time in the π−p t distribution at −t=4 (GeV/c)2. All meson-proton cross sections are found to be similar in the range 1<−t<2.5 (GeV/c)2, although some small systematic differences are observed. Cross sections for pp and p―p are compared with previous data.

0 data tables match query

POLARIZATION PARAMETERS AND ANGULAR DISTRIBUTIONS IN PI+- P ELASTIC SCATTERING AT 100-GEV/C AND IN P P ELASTIC SCATTERING AT 100-GEV/C AND 300-GEV/C

Kline, R.V. ; Law, M.E. ; Pipkin, F.M. ; et al.
Phys.Rev.D 22 (1980) 553-572, 1980.
Inspire Record 158989 DOI 10.17182/hepdata.24156

Measurements of the polarization parameters and angular distributions are reported for π±p elastic scattering at 100 GeV/c and for pp elastic scattering at 100- and 300-GeV/c incident momentum. The π±p data cover the kinematic range 0.18≤−t≤1.10 GeV2 and are in agreement with current Regge-model predictions. The pp data cover the kinematic range 0.15≤−t≤1.10 GeV2 and 0.15≤−t≤2.00 GeV2 at 100 and 300 GeV/c, respectively, and are found to be consistent with absorption-model predictions.

0 data tables match query

The Real Part of the Forward Elastic Nuclear Amplitude for $p p$, $\bar{p} p$, $\pi^{+} p$, $\pi^{-} p$, $K^{+} p$, and $K^{-} p$ Scattering Between 70-GeV/c and 200-GeV/c

Fajardo, L.A. ; Majka, R. ; Marx, J.N. ; et al.
Phys.Rev.D 24 (1981) 46, 1981.
Inspire Record 152596 DOI 10.17182/hepdata.24028

We have measured the elastic cross section for pp, p¯p, π+p, π−p, K+p, and K−p scattering at incident momenta of 70, 100, 125, 150, 175, and 200 GeV/c. The range of the four-momentum transfer squared t varied with the beam momentum from 0.0016≤−t≤0.36 (GeV/c)2 at 200 GeV/c to 0.0018≤−t≤0.0625 (GeV/c)2 at 70 GeV/c. The conventional parametrization of the t dependence of the nuclear amplitude by a simple exponential in t was found to be inadequate. An excellent fit to the data was obtained by a parametrization motivated by the additive quark model. Using this parametrization we determined the ratio of the real to the imaginary part of the nuclear amplitude by the Coulomb-interference method.

0 data tables match query

A High Statistics Study of $\pi^{+} p$, $\pi^{-} p$, and $p p$ Elastic Scattering at 200 GeV/c

Schiz, A. ; Fajardo, L.A. ; Majka, R. ; et al.
Phys.Rev.D 24 (1981) 26, 1981.
Inspire Record 143937 DOI 10.17182/hepdata.24037

We have measured π+p, π−p, and pp elastic scattering at an incident-beam momentum of 200 GeV/c in the region of −t, four-momentum transfer squared, from 0.021 to 0.665 (GeV/c)2. The data allow an investigation of the t dependence of the logarithmic forward slope parameter b≡(ddt)(lndσdt). In addition to standard parametrization, we use functional forms suggested by the additive quark model to fit the measured dσdt distributions. Within the context of this model we estimate the size of the clothed quark in the pion and proton. Limits on the elastic-scattering amplitude derived from unitarity bounds are checked, and no violations are observed.

0 data tables match query

Elastic Scattering of $\pi^{\pm}$ and $K^{\pm}$ on Protons at 100-GeV/c and 200-GeV/c

Kalbach, R.M. ; Krueger, K.W. ; Pifer, A.E. ; et al.
Phys.Rev.D 27 (1983) 2752-2754, 1983.
Inspire Record 195613 DOI 10.17182/hepdata.23833

Data are presented on elastic πp and Kp scattering for values of −t up to 2.5 and 3.5 (GeV/c)2 at incident momenta of 100 and 200 GeV/c, respectively. All of the cross sections are found to be nearly identical, although there is some momentum dependence of the π+p data; a small systematic difference observed between pion and kaon data cannot be explained by geometrical scaling.

0 data tables match query

Measurements of polarization in pi- p elastic scattering at large angles

Hill, D. ; Koehler, P.F.M. ; Novey, T.B. ; et al.
Phys.Rev.Lett. 27 (1971) 1241-1243, 1971.
Inspire Record 68894 DOI 10.17182/hepdata.229

We have made measurements of polarization in π−p elastic scattering, with emphasis over the backward region, at 1.60 to 2.28 GeVc. The results indicate the absence of u-channel dominance in the backward region, as was observed in the case of π+p scattering. Comparisons have been made with predictions of various phase-shift analyses which show that the agreement is generally very poor in the backward region.

0 data tables match query