Neutrino Production of Opposite Sign Dimuons at Tevatron Energies

Foudas, C. ; Bachmann, K.T. ; Bernstein, R.H. ; et al.
Phys.Rev.Lett. 64 (1990) 1207, 1990.
Inspire Record 26417 DOI 10.17182/hepdata.20000

We have measured the strange-quark content of the nucleon, ηs=−0.08+0.012, and the Kobayashi-Maskawa matrix element ‖Vcd‖=0.220−0.018+0.015 using a sample of 1797 νμ- and ν¯μ-induced μ−μ+ events with Pμ≥9 GeV/c and 30≤Eν≤600 GeV. The data are consistent with the slow-rescaling hypothesis of charm production in ν-N scattering and within this formalism yield a value of the charm-quark mass parameter mc=1.31−0.48+0.64 GeV/c2. .AE

0 data tables match query

Measurement of the strange sea distribution using neutrino charm production

Rabinowitz, S.A. ; Arroyo, C. ; Bachmann, K.T. ; et al.
Phys.Rev.Lett. 70 (1993) 134-137, 1993.
Inspire Record 354524 DOI 10.17182/hepdata.19779

A high-statistics study by the Columbia-Chicago-Fermilab-Rochester Collaboration of opposite-sign dimuon events induced by neutrino-nucleon scattering at the Fermilab Tevatron is presented. A sample of 5044 νμ and 1062 ν¯μ induced μ∓μ± events with Pμ1≥9 GeV/c, Pμ2≥5 GeV/c, 30≤Eν≤600 GeV, and 〈Q2〉=22.2 GeV2/c2 is observed. The data support the slow-rescaling model of charm production with a value of mc=1.31±0.24 GeV2/c2. The first measurement of the Q2 dependence of the nucleon strange quark distribution xs(x) is presented. The data yield the Cabibbo-Kobayashi-Maskawa matrix element ‖Vcd‖=0.209±0.012 and the nucleon fractional strangeness content ηs=0.064−0.007+0.008.

0 data tables match query

Neutrino Production of Same Sign Dimuons

Schumm, B.A. ; Merritt, F.S. ; Oreglia, M.J. ; et al.
Phys.Rev.Lett. 60 (1988) 1618, 1988.
Inspire Record 23079 DOI 10.17182/hepdata.20157

In a sample of 670 000 charged-current neutrino events, 101 μ−μ− events have been observed, with 30 GeV<Eν<600 GeV and Pμ>9 GeV/c for both muons. After background subtraction, 18.5±13.9 events remain, yielding a prompt rate of (5.5±4.1)×10−5 per charged-current event. A sample of 124 000 antineutrino events yields 15 μ+μ+ events, giving 6.4±4.2 events after background subtraction and a prompt rate of (1.0±0.7)×10−4 per charged-current event. The numbers and kinematic distributions of these events are consistent with standard model sources.

0 data tables match query

Forward Production of Charm States and Prompt Single Muons in 350-{GeV} $p$ Fe Interactions

Ritchie, J.L. ; Bodek, A. ; Breedon, R. ; et al.
Phys.Lett.B 126 (1983) 499, 1983.
Inspire Record 189126 DOI 10.17182/hepdata.30702

The forward production of charm states in 350 GeV p-Fe interactions has been studied via the production of prompt single muons with momentum p ≳ 20 GeV/ c . The data indicate equal production of single μ + and μ − events. The observed momentum distributions can be fit with the hypothesis that D mesons are produced with an invariant cross section proportional to (1 − x F ) 5.0±0.8 exp[−(2 ± 0.3) P t ] and do not favor a large diffractive cross section predicted by intrinsic charm models. Extrapolation of the distributions to x F = 0 yields a total D D production cross section of 22.6 ± 2.1(±3.6)ωb/nucleon on the assumption of a linear A dependence and 8% average semileptonic branching ratio of charm states.

0 data tables match query

Neutrino production of same sign dimuons at the Fermilab Tevatron

Sandler, P.H. ; Kinnel, T.S. ; Smith, W.H. ; et al.
Z.Phys.C 57 (1993) 1-12, 1993.
Inspire Record 32390 DOI 10.17182/hepdata.14493

The rate of neutrino- and antineutrino-induced prompt same-sign dimuon production in steel was measured using a sample of μ−μ− events and 25 μ+μ+ events withPμ>9 GeV/c, produced in 1.5 millionvμ and 0.3 million\(\overline {v_\mu}\) induced charged-current events with energies between 30 GeV and 600 GeV. The data were obtained with the Chicago-Columbia-Fermilab-Rochester (CCFR) neutrino detector in the Fermilab Tevatron Quadrupole Triplet Neutrino Beam during experiments E 744 and E 770. After background subtraction, the prompt rate of same-sign dimuon production is (0.53±0.24)×10−4 pervμ charged-current event and (0.52±0.33)×10−4 per\(\overline {v_\mu}\) charged-current event. The kinematic distributions of the same-sign dimuon events after background subtraction are consistent with those of the non-prompt background due to meson decays in the hadron shower of a charged-current event. Calculations ofc\(\bar c\) gluon bremsstrahlung, based on improved measurements of the charm mass parameter and nucleon structure functions by the CCFR collaboration, yield a prompt rate of (0.09±0.39)×10−4 pervμ charged-current event. In this case,c\(\bar c\) gluon bremsstrahlung is probably not an observable source of prompt same-sign dimuons.

0 data tables match query

A Precise measurement of the weak mixing angle in neutrino nucleon scattering

The CCFR collaboration Arroyo, C. ; King, B.J. ; Bachmann, K.T. ; et al.
Phys.Rev.Lett. 72 (1994) 3452-3455, 1994.
Inspire Record 360411 DOI 10.17182/hepdata.37276

We report a precise measurement of the weak mixing angle from the ratio of neutral current to charged current inclusive cross-sections in deep-inelastic neutrino-nucleon scattering. The data were gathered at the CCFR neutrino detector in the Fermilab quadrupole-triplet neutrino beam, with neutrino energies up to 600 GeV. Using the on-shell definition, ${\rm sin ~2\theta_W} \equiv 1 - \frac{{\rm M_W} ~2}{{\rm M_Z} ~2}$, we obtain ${\rm sin ~2\theta_W} = 0.2218 \pm 0.0025 ({\rm stat.}) \pm 0.0036 ({\rm exp.\: syst.}) \pm 0.0040 ({\rm model})$.

0 data tables match query

Real Part of the Proton-Proton Forward Scattering Amplitude from 50-GeV to 400-GeV.

Bartenev, V. ; Carrigan, Richard A. ; Chiang, I-Hung ; et al.
Phys.Rev.Lett. 31 (1973) 1367-1370, 1973.
Inspire Record 81733 DOI 10.17182/hepdata.21379

From measurements of proton-proton elastic scattering at very small momentum transfers where the nuclear and Coulomb amplitudes interfere, we have deduced values of ρ, the ratio of the real to the imaginary forward nuclear amplitude, for energies from 50 to 400 GeV. We find that ρ increases from -0.157 ± 0.012 at 51.5 GeV to +0.039 ± 0.012 at 393 GeV, crossing zero at 280 ± 60 GeV.

0 data tables match query

Inclusive $\pi^0$ Production by High-Energy Protons

Carey, David C. ; Johnson, J.R. ; Kammerud, R. ; et al.
Phys.Rev.D 14 (1976) 1196, 1976.
Inspire Record 99992 DOI 10.17182/hepdata.4894

Measurements of the cross section for the reaction p+p→π0+anything have been completed. The data cover a range of incident proton energies 50-400 GeV, π0 transverse momenta 0.3-4 GeV/c, and laboratory angles 30-275 mrad. The experiment was performed using the internal proton beam at the Fermi National Accelerator Laboratory. A lead-glass counter was used to detect photons from the decay of π0's produced by collisions in thin targets of hydrogen or carbon. Tables of the measured cross sections are presented.

0 data tables match query

$J/\psi$ Photoproduction from 60-GeV/c to 300-GeV/c

Binkley, Morris E. ; Bohler, C. ; Butler, J. ; et al.
Phys.Rev.Lett. 48 (1982) 73, 1982.
Inspire Record 168767 DOI 10.17182/hepdata.20597

Measurements of the energy and t dependence of diffractive Jψ photoproduction are presented. A significant rise in the cross section over the energy range 60-300 GeV is observed. It is found that (30±4)% of the events are inelastic.

0 data tables match query

Search for the lepton number violating process anti-nu/mu e- --> mu- anti-nu/e.

The NuTeV collaboration Formaggio, J.A. ; Yu, J. ; Yu, J. ; et al.
Phys.Rev.Lett. 87 (2001) 071803, 2001.
Inspire Record 555474 DOI 10.17182/hepdata.42668

The NuTeV experiment at Fermilab has used a sign-selected neutrino beam to perform a search for the lepton number violating process $\bar{\nu}_mu e^- \to \mu^- \bar{\nu}_e$, and to measure the cross-section of the Standard Model inverse muon decay process $\nu_{\mu} e^- \to \mu^- \nu_e$. NuTeV measures the inverse muon decay asymptotic cross-section $\sigma/E$ to be 13.8 $\pm$ 1.2 $\pm$ 1.4 x $10^{-42} cm^2$/GeV. The experiment also observes no evidence for lepton number violation and places one of the most restrictive limits on the LNV/IMD cross-section ratio at $\sigma (\bar{\nu}_{\mu} e^- \to \mu^- \bar{\nu}_e) /\sigma (\nu_{\mu}e^- \to \mu^- \nu_e$) $\le$ 1.7% at 90% C.L. for V-A couplings and $\le$ 0.6% for scalar couplings.

0 data tables match query