Measurements of production and inelastic cross sections for $\mbox{p}+\mbox{C}$, $\mbox{p}+\mbox{Be}$, and $\mbox{p}+\mbox{Al}$ at 60 GeV/$c$ and $\mbox{p}+\mbox{C}$ and $\mbox{p}+\mbox{Be}$ at 120 GeV/$c$

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Phys.Rev.D 100 (2019) 112001, 2019.
Inspire Record 1753094 DOI 10.17182/hepdata.95181

This paper presents measurements of production cross sections and inelastic cross sections for the following reactions: 60 GeV/$c$ protons with C, Be, Al targets and 120 GeV/$c$ protons with C and Be targets. The analysis was performed using the NA61/SHINE spectrometer at the CERN SPS. First measurements were obtained using protons at 120 GeV/$c$, while the results for protons at 60 GeV/$c$ were compared with previously published measurements. These interaction cross section measurements are critical inputs for neutrino flux prediction in current and future accelerator-based long-baseline neutrino experiments.

0 data tables match query

Measurements of hadron production in $\pi^{+}$ + C and $\pi^{+}$ + Be interactions at 60 GeV/$c$

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Phys.Rev.D 100 (2019) 112004, 2019.
Inspire Record 1754136 DOI 10.17182/hepdata.91220

Precise knowledge of hadron production rates in the generation of neutrino beams is necessary for accelerator-based neutrino experiments to achieve their physics goals. NA61/SHINE, a large-acceptance hadron spectrometer, has recorded hadron+nucleus interactions relevant to ongoing and future long-baseline neutrino experiments at Fermi National Accelerator Laboratory. This paper presents three analyses of interactions of 60 GeV/$c$ $\pi^+$ with thin, fixed carbon and beryllium targets. Integrated production and inelastic cross sections were measured for both of these reactions. In an analysis of strange, neutral hadron production, differential production multiplicities of $K^0_{S}$, $\Lambda$ and anti-$\Lambda$ were measured. Lastly, in an analysis of charged hadron production, differential production multiplicities of $\pi^+$, $\pi^-$, $K^+$, $K^-$ and protons were measured. These measurements will enable long-baseline neutrino experiments to better constrain predictions of their neutrino flux in order to achieve better precision on their neutrino cross section and oscillation measurements.

0 data tables match query

Measurement of $\phi $ meson production in $p + p$ interactions at 40, 80 and $158 \, \hbox {GeV}/c$ with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 199, 2020.
Inspire Record 1749613 DOI 10.17182/hepdata.93228

Results on $\phi$ meson production in inelastic p+p collisions at CERN SPS energies are presented. They are derived from data collected by the NA61/SHINE fixed target experiment, by means of invariant mass spectra fits in the $\phi \to K^+K^-$ decay channel. They include the first ever measured double differential spectra of $\phi$ mesons as a function of rapidity $y$ and transverse momentum $p_T$ for proton beam momenta of 80 GeV/c and 158 GeV/c, as well as single differential spectra of $y$ or $p_T$ for beam momentum of 40 GeV/c. The corresponding total $\phi$ yields per inelastic p+p event are obtained. These results are compared with existing data on $\phi$ meson production in p+p collisions. The comparison shows consistency but superior accuracy of the present measurements. The emission of $\phi$ mesons in p+p reactions is confronted with that occurring in Pb+Pb collisions, and the experimental results are compared with model predictions. It appears that none of the considered models can properly describe all the experimental observables.

0 data tables match query

Measurements of $\Xi^{-}$ and $\overline{\Xi}^{+}$ production in proton-proton interactions at $\sqrt{s_{NN}}$ = 17.3 GeV in the NA61/SHINE experiment

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 833, 2020.
Inspire Record 1799187 DOI 10.17182/hepdata.98674

The production of $\Xi(1321)^{-}$ and $\overline{\Xi}(1321)^{+}$ hyperons in inelastic p+p interactions is studied in a fixed target experiment at a beam momentum of 158 GeV/textitc. Double differential distributions in rapidity y and transverse momentum $p_{T}$ are obtained from a sample of 33M inelastic events. They allow to extrapolate the spectra to full phase space and to determine the mean multiplicity of both $\Xi^{-}$ and $\overline{\Xi}^{+}$. The rapidity and transverse momentum spectra are compared to transport model predictions. The $\Xi^{-}$ mean multiplicity in inelastic p+p interactions at 158~\GeVc is used to quantify the strangeness enhancement in A+A collisions at the same centre-of-mass energy per nucleon pair.

0 data tables match query

Measurement of pseudorapidity distributions of charged particles in proton-proton collisions at $\sqrt{s}$ = 8 TeV by the CMS and TOTEM experiments

The CMS & TOTEM collaborations Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 74 (2014) 3053, 2014.
Inspire Record 1294140 DOI 10.17182/hepdata.66893

Pseudorapidity (eta) distributions of charged particles produced in proton-proton collisions at a centre-of-mass energy of 8 TeV are measured in the ranges abs(eta) < 2.2 and 5.3 < abs(eta) < 6.4 covered by the CMS and TOTEM detectors, respectively. The data correspond to an integrated luminosity of 45 inverse microbarns. Measurements are presented for three event categories. The most inclusive category is sensitive to 91-96% of the total inelastic proton-proton cross section. The other two categories are disjoint subsets of the inclusive sample that are either enhanced or depleted in single diffractive dissociation events. The data are compared to models used to describe high-energy hadronic interactions. None of the models considered provide a consistent description of the measured distributions.

0 data tables match query

High $\chi_t$ Single Spin Asymmetry in $\pi^0$ and $\eta$ Production at $\chi_F$ = 0 by 200 GeV Polarized Antiprotons and Protons

The E581 & E704 collaborations Adams, D.L. ; Akchurin, N. ; Belikov, N.I. ; et al.
Phys.Lett.B 276 (1992) 531-535, 1992.
Inspire Record 314231 DOI 10.17182/hepdata.29252

A measurement of the single-spin asymmetry A N in p↑ + p→ π 0 + X at 200 GeV with x F = 0 shows a transition in the production process from a “ low -x T ” regime with A N = 0, through an intermediate region of negative asymmetry, to a “ high -x T ” regime with A N > 0.3. This transition occurs at x T ≈ 0.4 and is consistent with x T -scaling of A N in pion production using polarized beams or targets from √− s =5.2 to 19.4 GeV. Results for A N in η production by polarized protons and in π 0 production by polarized antiprotons are also presented.

0 data tables match query

Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell-Yan production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 628, 2023.
Inspire Record 2079374 DOI 10.17182/hepdata.115656

The double differential cross sections of the Drell-Yan lepton pair ($\ell^+\ell^-$, dielectron or dimuon) production are measured as functions of the invariant mass $m_{\ell\ell}$, transverse momentum $p_\mathrm{T}(\ell\ell)$, and $\phi^*_\eta$. The $\phi^*_\eta$ observable, derived from angular measurements of the leptons and highly correlated with $p_\mathrm{T}(\ell\ell)$, is used to probe the low-$p_\mathrm{T}(\ell\ell)$ region in a complementary way. Dilepton masses up to 1 TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various $m_{\ell\ell}$ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3 fb$^{-1}$ of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.

0 data tables match query

Measurements of $\pi^{\pm}$, $K^{\pm}$ and proton yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Abgrall, N. ; Aduszkiewicz, A. ; Andronov, E.V. ; et al.
Eur.Phys.J.C 79 (2019) 100, 2019.
Inspire Record 1687433 DOI 10.17182/hepdata.88360

Measurements of the $\pi^{\pm}$, $K^{\pm}$, and proton double differential yields emitted from the surface of the 90-cm-long carbon target (T2K replica) were performed for the incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS using data collected during 2010 run. The double differential $\pi^{\pm}$ yields were measured with increased precision compared to the previously published NA61/SHINE results, while the $K^{\pm}$ and proton yields were obtained for the first time. A strategy for dealing with the dependence of the results on the incoming proton beam profile is proposed. The purpose of these measurements is to reduce significantly the (anti)neutrino flux uncertainty in the T2K long-baseline neutrino experiment by constraining the production of (anti)neutrino ancestors coming from the T2K target.

0 data tables match query

Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 560, 2023.
Inspire Record 2175946 DOI 10.17182/hepdata.130712

A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton+jets channel of top quark pair production ($\mathrm{t\bar{t}}$) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 GeV. The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 fb$^{-1}$. The differential $\mathrm{t\bar{t}}$ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of 173.06 $\pm$ 0.84 GeV.

0 data tables match query

Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 020, 2023.
Inspire Record 2152227 DOI 10.17182/hepdata.129875

A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016-2018, with an integrated luminosity of 138 fb$^{-1}$. Events are separated into single-lepton, same-sign charge dilepton, and multilepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for $\mathrm{T\overline{T}}$ production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for $\mathrm{B\overline{B}}$ production with B quark decays to tW.

0 data tables match query