A Measurement of the Neutral Current Electroweak Parameters using the Fermilab Narrow Band Neutrino Beam

Reutens, P.G. ; Merritt, F.S. ; Oreglia, M.J. ; et al.
Z.Phys.C 45 (1990) 539-550, 1990.
Inspire Record 305243 DOI 10.17182/hepdata.15280

We report a measurement of the electroweak parameters sin2θw and ϱ based on the ratios of neutral current to charged current events measured in the Fermilab narrow-band neutrino beam at energies of 30–240 GeV. The data are fully corrected for radiative effects, heavy-quark production, and other effects. The best value for sin2θw obtained, sin2θw=0.239±0.011, is consistent with the most recent values fromW andZ production, as well as from other neutrino experiments.

0 data tables match query

NEUTRAL CURRENT COUPLING IN HIGH-ENERGY NEUTRINO INTERACTIONS.

Merritt, F.S. ; Barish, B.C. ; Bartlett, J.F. ; et al.
Phys.Rev.D 17 (1978) 2199-2205, 1978.
Inspire Record 132560 DOI 10.17182/hepdata.24431

We present measured hadron energy distributions for the reactions ν(ν¯)+N→ν(ν¯)+hadrons at high energy, as well as for the similar charged-current interactions. Insofar as possible, the determination of these distributions avoids any a priori assumptions about either the neutral-current or the charged-current interactions. We further analyze the neutral-current distributions within the framework of specific models, particularly the scaling model, to obtain a positive-helicity component P=0.36±0.10, which lies between pure V−A and pure V or A, and a coupling strength of g0=0.31±0.03 relative to the charged-current interaction. These coupling parameters agree well with the predictions of the Weinberg-Salam model with sin2θW=0.33±0.07.

0 data tables match query

Measurement of the Neutral Current Interactions of High-Energy Neutrinos and anti-neutrinos

Wanderer, P. ; Benvenuti, A. ; Cline, D. ; et al.
Phys.Rev.D 17 (1978) 1679, 1978.
Inspire Record 120154 DOI 10.17182/hepdata.24428

Measurements of the ν and ν¯ weak hadronic neutral-current total cross sections and hadron energy distributions are consistent with a V−A form for this current. They are three standard deviations from pure V, pure A, or a pure T form and unambiguously exclude V+A and any linear combination of S and P.

0 data tables match query