A Precision measurement of the prompt photon cross-section in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2662-2666, 1994.
Inspire Record 375582 DOI 10.17182/hepdata.19680

A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.

0 data tables match query

Upsilon production in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 4358, 1995.
Inspire Record 398187 DOI 10.17182/hepdata.42349

We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential, (d2σdPtdy)y=0, and integrated cross sections in pp¯ collisions at s=1.8 TeV using a sample of 16.6 ± 0.6 pb−1 collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. Comparison is made to a leading order QCD prediction.

0 data tables match query

Measurement of the B meson differential cross-section, d sigma / d p(T), in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 1451-1455, 1995.
Inspire Record 393552 DOI 10.17182/hepdata.42432

This paper presents the first direct measurement of the $B$ meson differential cross section, $d\sigma/dp_T$, in $p\overline{p}$ collisions at $\sqrt{s}=1.8$ TeV using a sample of $19.3 \pm 0.7$ pb$~{-1}$ accumulated by the Collider Detector at Fermilab (CDF). The cross section is measured in the central rapidity region $|y| < 1$ for $p_T(B) > 6.0$ GeV/$c$ by fully reconstructing the $B$ meson decays $B~{+}\rightarrow J/\psi K~{+}$ and $B~{0}\rightarrow J/\psi K~{*0}(892)$, where $J/\psi \rightarrow \mu~+\mu~-$ and $K~{*0} \rightarrow K~+ \pi~-$. A comparison is made to the theoretical QCD prediction calculated at next-to-leading order.

0 data tables match query

Production of J / psi mesons from chi(c) meson decays in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 79 (1997) 578-583, 1997.
Inspire Record 440446 DOI 10.17182/hepdata.42231

We have measured the fraction of J/ψ mesons originating from χc meson decays in pp¯ collisions at s=1.8TeV. The fraction, for PTJ/ψ>4.0GeV/c and |ηJ/ψ|<0.6, not including contributions from b flavored hadrons, is 29.7%±1.7%(stat)±5.7%(syst). We have determined the cross sections for J/ψ mesons originating from χc decays and for directly produced J/ψ mesons. We have found that direct J/ψ production is in excess of the prediction of the color singlet model by the same factor found for direct ψ(2S) production.

0 data tables match query

J / psi and psi (2S) production in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 79 (1997) 572-577, 1997.
Inspire Record 440101 DOI 10.17182/hepdata.42223

We present a study of J/ψ and ψ(2S) production in pp¯ collisions, at s=1.8TeV with the CDF detector at Fermilab. The J/ψ and ψ(2S) mesons are reconstructed using their μ+μ− decay modes. We have measured the inclusive production cross section for both mesons as a function of their transverse momentum in the central region, |η|<0.6. We also measure the fraction of these events originating from b hadrons. We thus extract individual cross sections for J/ψ and ψ(2S) mesons from b-quark decays and prompt production. We find a large excess (approximately a factor of 50) of direct ψ(2S) production compared with predictions from the color singlet model.

0 data tables match query

Direct photon cross section with conversions at CDF

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 70 (2004) 074008, 2004.
Inspire Record 648506 DOI 10.17182/hepdata.42869

We present a measurement of the isolated direct photon cross section in p-pbar collisions at sqrt(s) = 1.8 TeV and |eta| &lt; 0.9 using data collected between 1994 and 1995 by the Collider Detector at Fermilab (CDF). The measurement is based on events where the photon converts into an electron-positron pair in the material of the inner detector, resulting in a two-track event signature. To remove pi0 -> gamma gamma and eta -> gamma gamma events we use a new background subtraction technique which takes advantage of the tracking information available in a photon conversion event. We find that the shape of the cross section as a function of pT is poorly described by next-to-leading-order QCD predictions, but agrees with previous CDF measurements.

0 data tables match query

Upsilon production and polarization in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.Lett. 88 (2002) 161802, 2002.
Inspire Record 569269 DOI 10.17182/hepdata.42894

We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential cross sections (d2σ/dpTdy)|y|<0.4, as well as on the ϒ(1S) polarization in pp¯ collisions at s=1.8TeV using a sample of 77±3pb−1 collected by the collider detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. The measured angular distribution of the muons in the ϒ(1S) rest frame is consistent with unpolarized meson production.

0 data tables match query

Measurement of the B+ total cross-section and B+ differential cross-section d sigma / dp(T) in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 65 (2002) 052005, 2002.
Inspire Record 567345 DOI 10.17182/hepdata.42889

We present measurements of the B+ meson total cross section and differential cross section $d\sigma/ dp_T$. The measurements use a $98\pm 4$ pb^{-1} sample of $p \bar p$ collisions at $\sqrt{s}=1.8$ TeV collected by the CDF detector. Charged $B$ meson candidates are reconstructed through the decay $B^{\pm} \to J/\psi K^{\pm}$ with $J/\psi\to \mu^+ \mu^-$. The total cross section, measured in the central rapidity region $|y|&lt;1.0$ for $p_T(B)>6.0$ GeV/$c$, is $3.6 \pm 0.6 ({\rm stat} \oplus {\rm syst)} \mu$b. The measured differential cross section is substantially larger than typical QCD predictions calculated to next-to-leading order.

0 data tables match query

Comparison of the isolated direct photon cross-sections in p anti-p collisions at s**(1/2) = 1.8-TeV and s**(1/2) = 0.63-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 65 (2002) 112003, 2002.
Inspire Record 581379 DOI 10.17182/hepdata.42882

We have measured the cross sections $d^2\sigma/dP_T d\eta$ for production of isolated direct photons in \pbarp collisions at two different center-of-mass energies, 1.8 TeV and 0.63 TeV, using the Collider Detector at Fermilab (CDF). The normalization of both data sets agree with the predictions of Quantum Chromodynamics (QCD) for photon transverse momentum ($P_T$) of 25 GeV/c, but the shapes versus photon $P_T$ do not. These shape differences lead to a significant disagreement in the ratio of cross sections in the scaling variable $x_T (\equiv 2P_T/\sqrt{s}$). This disagreement in the $x_T$ ratio is difficult to explain with conventional theoretical uncertainties such as scale dependence and parton distribution parameterizations.

0 data tables match query

Cross-section and heavy quark composition of gamma + muon events produced in p anti-p collisions

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 012003, 2002.
Inspire Record 557647 DOI 10.17182/hepdata.42881

We present a measurement of the cross section and the first measurement of the heavy flavor content of associated direct photon + muon events produced in hadronic collisions. These measurements come from a sample of 1.8 TeV ppbar collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily due to Compton scattering process charm+gluon -> charm+photon, with the final state charm quark producing a muon. The cross section for events with a photon transverse momentum between 12 and 40 GeV/c is measured to be 46.8+-6.3+-7.5 pb, which is two standard deviations below the most recent theoretical prediction. A significant fraction of the events in the sample contain a final-state bottom quark. The ratio of charm to bottom production is measured to be 2.4+-1.2, in good agreement with QCD models.

0 data tables match query