A Measurement of the Neutral Current Electroweak Parameters using the Fermilab Narrow Band Neutrino Beam

Reutens, P.G. ; Merritt, F.S. ; Oreglia, M.J. ; et al.
Z.Phys.C 45 (1990) 539-550, 1990.
Inspire Record 305243 DOI 10.17182/hepdata.15280

We report a measurement of the electroweak parameters sin2θw and ϱ based on the ratios of neutral current to charged current events measured in the Fermilab narrow-band neutrino beam at energies of 30–240 GeV. The data are fully corrected for radiative effects, heavy-quark production, and other effects. The best value for sin2θw obtained, sin2θw=0.239±0.011, is consistent with the most recent values fromW andZ production, as well as from other neutrino experiments.

0 data tables match query

Inverse Muon Decay, $\nu_\mu e \to \mu^- \nu_e$, at the Fermilab Tevatron

Mishra, S.R. ; Bachmann, K.T. ; Blair, R.E. ; et al.
Phys.Lett.B 252 (1990) 170-176, 1990.
Inspire Record 296115 DOI 10.17182/hepdata.15430

We report an improved measurement of the inverse muon decay process, ν μ +e→ μ − + ν e , at the Fermilab Tevatron. The rate of this reaction with respect to the ν μ -N charged current interaction is measured to be (0.1245±0.0057(stat.)±0.0031 (sys.)) × 10 −2 . The measurement confirms the standard model predictions for the Lorentz structure of the weak current, the helicity of the neutrino, and the energy dependence of the cross section.

0 data tables match query

Nucleon structure functions from high energy neutrino interactions

Oltman, E. ; Auchincloss, Priscilla S. ; Blair, R.E. ; et al.
Z.Phys.C 53 (1992) 51-71, 1992.
Inspire Record 335706 DOI 10.17182/hepdata.1433

Structure functions obtained from high energy neutrino and antineutrino scattering from an iron target are presented. These were extracted from the combined data of Fermilab experiments E616 and E701; these utilized narrow band beam runs between 1979–1982. The structure functions are used to test the validity of quarkparton model (QPM) predictions and to extract the QCD scale parameter Λ from fits to the Altarelli-Parisi equations.

0 data tables match query

Measurement of the Inclusive Charged Current Cross-section for Neutrino and Anti-neutrino Scattering on Isoscalar Nucleons

Auchincloss, Priscilla S. ; Blair, R. ; Haber, C. ; et al.
Z.Phys.C 48 (1990) 411-432, 1990.
Inspire Record 27761 DOI 10.17182/hepdata.15124

This paper reports on measurements of the total cross section for the inclusive reaction vμ+N, as a function of incident energy. Neutrinos and antineutrinos with energy in the range 3

0 data tables match query

A Measurement of $\Lambda_{\overline{MS}}$ from $\nu_{\mu}$ - Fe Nonsinglet Structure Functions at the Fermilab Tevatron

Quintas, P.Z. ; Leung, W.C. ; Mishra, S.R. ; et al.
Phys.Rev.Lett. 71 (1993) 1307-1310, 1993.
Inspire Record 336860 DOI 10.17182/hepdata.19733

The CCFR Collaboration presents a measurement of scaling violations of the nonsinglet structure function and a comparison to the predictions of perturbative QCD. The value of ΛQCD, from the nonsinglet evolution with Q2>15 GeV2 and in the modified minimal-subtraction renormalization scheme, is found to be 210±28(stat)±41(syst) MeV.

0 data tables match query

Neutrino Production of Opposite Sign Dimuons at Tevatron Energies

Foudas, C. ; Bachmann, K.T. ; Bernstein, R.H. ; et al.
Phys.Rev.Lett. 64 (1990) 1207, 1990.
Inspire Record 26417 DOI 10.17182/hepdata.20000

We have measured the strange-quark content of the nucleon, ηs=−0.08+0.012, and the Kobayashi-Maskawa matrix element ‖Vcd‖=0.220−0.018+0.015 using a sample of 1797 νμ- and ν¯μ-induced μ−μ+ events with Pμ≥9 GeV/c and 30≤Eν≤600 GeV. The data are consistent with the slow-rescaling hypothesis of charm production in ν-N scattering and within this formalism yield a value of the charm-quark mass parameter mc=1.31−0.48+0.64 GeV/c2. .AE

0 data tables match query

Measurement of the strange sea distribution using neutrino charm production

Rabinowitz, S.A. ; Arroyo, C. ; Bachmann, K.T. ; et al.
Phys.Rev.Lett. 70 (1993) 134-137, 1993.
Inspire Record 354524 DOI 10.17182/hepdata.19779

A high-statistics study by the Columbia-Chicago-Fermilab-Rochester Collaboration of opposite-sign dimuon events induced by neutrino-nucleon scattering at the Fermilab Tevatron is presented. A sample of 5044 νμ and 1062 ν¯μ induced μ∓μ± events with Pμ1≥9 GeV/c, Pμ2≥5 GeV/c, 30≤Eν≤600 GeV, and 〈Q2〉=22.2 GeV2/c2 is observed. The data support the slow-rescaling model of charm production with a value of mc=1.31±0.24 GeV2/c2. The first measurement of the Q2 dependence of the nucleon strange quark distribution xs(x) is presented. The data yield the Cabibbo-Kobayashi-Maskawa matrix element ‖Vcd‖=0.209±0.012 and the nucleon fractional strangeness content ηs=0.064−0.007+0.008.

0 data tables match query

Neutrino Production of Same Sign Dimuons

Schumm, B.A. ; Merritt, F.S. ; Oreglia, M.J. ; et al.
Phys.Rev.Lett. 60 (1988) 1618, 1988.
Inspire Record 23079 DOI 10.17182/hepdata.20157

In a sample of 670 000 charged-current neutrino events, 101 μ−μ− events have been observed, with 30 GeV<Eν<600 GeV and Pμ>9 GeV/c for both muons. After background subtraction, 18.5±13.9 events remain, yielding a prompt rate of (5.5±4.1)×10−5 per charged-current event. A sample of 124 000 antineutrino events yields 15 μ+μ+ events, giving 6.4±4.2 events after background subtraction and a prompt rate of (1.0±0.7)×10−4 per charged-current event. The numbers and kinematic distributions of these events are consistent with standard model sources.

0 data tables match query

Neutrino production of same sign dimuons at the Fermilab Tevatron

Sandler, P.H. ; Kinnel, T.S. ; Smith, W.H. ; et al.
Z.Phys.C 57 (1993) 1-12, 1993.
Inspire Record 32390 DOI 10.17182/hepdata.14493

The rate of neutrino- and antineutrino-induced prompt same-sign dimuon production in steel was measured using a sample of μ−μ− events and 25 μ+μ+ events withPμ>9 GeV/c, produced in 1.5 millionvμ and 0.3 million\(\overline {v_\mu}\) induced charged-current events with energies between 30 GeV and 600 GeV. The data were obtained with the Chicago-Columbia-Fermilab-Rochester (CCFR) neutrino detector in the Fermilab Tevatron Quadrupole Triplet Neutrino Beam during experiments E 744 and E 770. After background subtraction, the prompt rate of same-sign dimuon production is (0.53±0.24)×10−4 pervμ charged-current event and (0.52±0.33)×10−4 per\(\overline {v_\mu}\) charged-current event. The kinematic distributions of the same-sign dimuon events after background subtraction are consistent with those of the non-prompt background due to meson decays in the hadron shower of a charged-current event. Calculations ofc\(\bar c\) gluon bremsstrahlung, based on improved measurements of the charm mass parameter and nucleon structure functions by the CCFR collaboration, yield a prompt rate of (0.09±0.39)×10−4 pervμ charged-current event. In this case,c\(\bar c\) gluon bremsstrahlung is probably not an observable source of prompt same-sign dimuons.

0 data tables match query

A Precise measurement of the weak mixing angle in neutrino nucleon scattering

The CCFR collaboration Arroyo, C. ; King, B.J. ; Bachmann, K.T. ; et al.
Phys.Rev.Lett. 72 (1994) 3452-3455, 1994.
Inspire Record 360411 DOI 10.17182/hepdata.37276

We report a precise measurement of the weak mixing angle from the ratio of neutral current to charged current inclusive cross-sections in deep-inelastic neutrino-nucleon scattering. The data were gathered at the CCFR neutrino detector in the Fermilab quadrupole-triplet neutrino beam, with neutrino energies up to 600 GeV. Using the on-shell definition, ${\rm sin ~2\theta_W} \equiv 1 - \frac{{\rm M_W} ~2}{{\rm M_Z} ~2}$, we obtain ${\rm sin ~2\theta_W} = 0.2218 \pm 0.0025 ({\rm stat.}) \pm 0.0036 ({\rm exp.\: syst.}) \pm 0.0040 ({\rm model})$.

0 data tables match query