Next-to-leading order QCD analysis of polarized deep inelastic scattering data.

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Lett.B 405 (1997) 180-190, 1997.
Inspire Record 443186 DOI 10.17182/hepdata.27078

We present a Next-to-Leading order perturbative QCD analysis of world data on the spin dependent structure functions $g_1^p, g_1^n$, and $g_1^d$, including the new experimental information on the $Q^2$ dependence of $g_1^n$. Careful attention is paid to the experimental and theoretical uncertainties. The data constrain the first moments of the polarized valence quark distributions, but only qualitatively constrain the polarized sea quark and gluon distributions. The NLO results are used to determine the $Q^2$ dependence of the ratio $g_1/F_1$ and evolve the experimental data to a constant $Q^2 = 5 GeV^2$. We determine the first moments of the polarized structure functions of the proton and neutron and find agreement with the Bjorken sum rule.

7 data tables match query

Data from the 2.75 degree spectrometer.

Data from the 2.75 degree spectrometer evolved to a mean Q**2 of 5 GeV**2 using the MSBAR parameterization. The second systematic error is due to the evolution.

Data from the 5.5 degree spectrometer.

More…

Two body photodisintegration of the deuteron up to 2.8-GeV

Belz, J.E. ; Potterveld, D.H. ; Anthony, P. ; et al.
Phys.Rev.Lett. 74 (1995) 646-649, 1995.
Inspire Record 399936 DOI 10.17182/hepdata.19630

Measurements were performed for the photodisintegration cross section of the deuteron for photon energies from 1.6 to 2.8 GeV and center-of-mass angles from 37° to 90°. The measured energy dependence of the cross section at θc.m.=90° is in agreement with the constituent counting rules.

0 data tables match query

Measurements of the Q**2 dependence of the proton and deuteron spin structure functions g1(p) and g1(d)

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Lett.B 364 (1995) 61-68, 1995.
Inspire Record 401107 DOI 10.17182/hepdata.28431

The ratio g1/F1 has been measured over the range 0.03<x<0.6 and 0.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized protons and deuterons. We find g1/F1 to be consistent with no Q2-dependence at fixed x in the deep-inelastic region Q~2>1 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

Neutral Pion Electroproduction in the Resonance Region at High $Q^2$

Villano, A.N. ; Stoler, P. ; Bosted, P.E. ; et al.
Phys.Rev.C 80 (2009) 035203, 2009.
Inspire Record 823260 DOI 10.17182/hepdata.54189

The process $ep \to e^{\prime}p^{\prime}\pi^0$ has been measured at $Q^2$ = 6.4 and 7.7 \ufourmomts in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center of mass frame considering the process $\gamma^{\ast}p \to p^{\prime}\pi^0$. Various details relating to the background subtractions, radiative corrections and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well known $\Delta(1232)$ resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios $R_{EM}$ and $R_{SM}$ along with the magnetic transition form factor $G_M^{\ast}$. It is found that the rapid fall off of the $\Delta(1232)$ contribution continues into this region of momentum transfer and that other resonances

125 data tables match query

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.9 for the small SOS spectrometer.

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.7 for the small SOS spectrometer.

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.5 for the small SOS spectrometer.

More…

Measurements of the Q**2 dependence of the proton and neutron spin structure functions g1(p) and g1(n).

The E155 collaboration Anthony, P.L ; Arnold, R.G ; Averett, T ; et al.
Phys.Lett.B 493 (2000) 19-28, 2000.
Inspire Record 530798 DOI 10.17182/hepdata.27035

The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find $\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007$ at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.

12 data tables match query

Results for G1/F1 for the proton and neutron.

Results for G1/F1 for the proton and neutron.

Results for G1/F1 for the proton and neutron.

More…

Measurements of R = $\sigma$(L)/sigma(T) for 0.03 < x < 0.1 and fit to world data.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Lett.B 452 (1999) 194-200, 1999.
Inspire Record 475305 DOI 10.17182/hepdata.28090

Measurements were made at SLAC of the cross section for scattering 29 GeV electrons from carbon at a laboratory angle of 4.5 degrees, corresponding to 0.03&lt;x&lt;0.1 and 1.3&lt;Q^2&lt;2.7 GeV^2. Values of R=sigma_L/sigma_T were extracted in this kinematic range by comparing these data to cross sections measured at a higher beam energy by the NMC collaboration. The results are in reasonable agreement with pQCD calculations and with extrapolations of the R1990 parameterization of previous data. A new fit is made including these data and other recent results.

0 data tables match query

Measurement of the neutron spin structure function g2(n) and asymmetry A2(n).

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Lett.B 404 (1997) 377-382, 1997.
Inspire Record 443408 DOI 10.17182/hepdata.27082

We have measured the neutron structure function g$_{2}^{n}$ and the virtual photon-nucleon asymmetry A$_{2}^{n}$ over the kinematic range $0.014\leq x \leq 0.7$ and $1.0 \leq Q^{2} \leq 17.0$ by scattering 48.3 GeV longitudinally polarized electrons from polarized $^{3}$He. Results for A$_{2}^{n}$ are significantly smaller than the $\sqrt{R}$ positivity limit over most of the measured range and data for g$_2^{n}$ are generally consistent with the twist-2 Wandzura-Wilczek prediction. Using our measured g$_{2}^{n}$ we obtain results for the twist-3 reduced matrix element $d_{2}^{n}$, and the integral $\int$g$_{2}^{n}(x)dx$ in the range $0.014\leq x \leq 1.0$. Data from this experiment are combined with existing data for g$_{2}^{n}$ to obtain an average for $d_{2}^{n}$ and the integral $\int$g$_{2}^{n}(x)dx$.

4 data tables match query

Data measured using the 2.75 degree spectrometer.

Data measured using the 5.5 degree spectrometer.

Measured value of the twist-3 reduced matrix element D2.

More…

Precision measurement of the proton and deuteron spin structure functions g2 and asymmetries A(2).

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 553 (2003) 18-24, 2003.
Inspire Record 585675 DOI 10.17182/hepdata.27033

We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7 < Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d2p and d2n are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.

7 data tables match query

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 2.75 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 5.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 10.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

More…

Measurement of the proton and deuteron spin structure functions g2 and asymmetry A(2).

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 458 (1999) 529-535, 1999.
Inspire Record 493768 DOI 10.17182/hepdata.27072

We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.

4 data tables match query

2.75 degree spectrometer data.

5.5 degree spectrometer data.

10.5 degree spectrometer data.

More…

Inclusive hadron photoproduction from longitudinally polarized protons and deuterons.

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 458 (1999) 536-544, 1999.
Inspire Record 495554 DOI 10.17182/hepdata.28074

We report measurements of the asymmetry A_parallel for inclusive hadron production on longitudinally polarized proton and deuteron targets by circularly polarized photons. The photons were produced via internal and external bremsstrahlung from an electron beam of 48.35 GeV. Asymmetries for both positive and negative signed hadrons, and a subset of identified pions, were measured in the momentum range 10<P<30 GeV at 2.75 and 5.5 degrees. Small non-zero asymmetries are observed for the proton, while the deuteron results are consistent with zero. Recent calculations do not describe the data well.

2 data tables match query

The asymmetry for polarized photoproduction of inclusive hadrons from a polarized proton target. The errors are statistical only.

The asymmetry for polarized photoproduction of inclusive identified pions from a polarized proton target. The errors are statistical only.