Angular Distribution of Charge Exchange and Inelastic Neutrons in $\pi^- - p$ Interactions at 313 and 371 MeV

Lind, Don L. ; Barish, Barry C. ; Ku, Richard J. ; et al.
Phys.Rev. 138 (1965) B1509-B1517, 1965.
Inspire Record 1186787 DOI 10.17182/hepdata.467

Neutron angular distributions from the charge-exchange (π0n) and inelastic modes (π0π0n,π+π−n) of the π−−p interaction have been investigated at 313 and 371 MeV incident-pion kinetic energy. The data were obtained with an electronic counter system. Elastic and inelastic neutrons were separated in the all-neutral final states by time of flight. At both energies the charge-exchange differential cross section at the forward neutron angles differs from that determined by Caris et al. from measurements of the π0-decay gamma distributions, but generally agrees with the phase-shift-analysis calculations of Roper. The distribution of inelastic neutrons from both modes shows a strong preference for low center-of-mass neutron energies. The distribution of these neutrons does not correspond to that expected from the I=0, π−π interaction (ABC effect) suggested to account for the anomaly in p−d collisions observed by Abashian et al. Finally, all available charge-exchange differential-cross-section data from this and other experiments were combined by at least-squares fit to a Legendre expansion of the form dσdΩ*(cosθπ0*)=Σl=0NalPl(cosθπ0*) with the following results (in mb/sr):

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Compton scattering by the proton through Theta(CMS) = 75-degrees and 90-degrees in the Delta resonance region

Hünger, A ; Peise, J ; Robbiano, A ; et al.
Nucl.Phys.A 620 (1997) 385-416, 1997.
Inspire Record 458618 DOI 10.17182/hepdata.36349

Differential cross sections for Compton scattering by the proton have been measured in the energy interval between 200 and 500 MeV at scattering angles of θ cms = 75° and θ cms = 90° using the CATS, the CATS/TRAJAN, and the COPP setups with the Glasgow Tagger at MAMI (Mainz). The data are compared with predictions from dispersion theory using photo-meson amplitudes from the recent VPI solution SM95. The experiment and the theoretical procedure are described in detail. It is found that the experiment and predictions are in agreement as far as the energy dependence of the differential cross sections in the Δ-range is concerned. However, there is evidence that a scaling down of the resonance part of the M 1+ 3 2 photo-meson amplitude by (2.8 ± 0.9)% is required in comparison with the VPI analysis. The deduced value of the M 1+ 3 2 - photoproduction amplitude at the resonance energy of 320 MeV is: |M 1+ 3 2 | = (39.6 ± 0.4) × 10 −3 m π + −1 .

1 data table match query

No description provided.


Single pi+ electroproduction on the proton in the first and second resonance regions at 0.25-GeV**2 < Q**2 < 0.65-GeV**2 using CLAS.

The CLAS collaboration Egiyan, H. ; Aznauryan, I.G. ; Burkert, V.D. ; et al.
Phys.Rev.C 73 (2006) 025204, 2006.
Inspire Record 707883 DOI 10.17182/hepdata.6748

The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.

75 data tables match query

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.

More…