Polarized target asymmetry in pion proton bremsstrahlung at 298-MeV

Bosshard, A. ; Amsler, Claude ; Bistirlich, J.A. ; et al.
Phys.Rev.Lett. 64 (1990) 2619-2622, 1990.
Inspire Record 303404 DOI 10.17182/hepdata.22827

First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.

2 data tables match query

No description provided.

No description provided.


Negative-pion photoproduction from neutrons by linearly polarized photons in the first resonance region

Kondo, K. ; Miyachi, T. ; Ukai, K. ; et al.
Phys.Rev.D 9 (1974) 529-533, 1974.
Inspire Record 93115 DOI 10.17182/hepdata.21954

The angular dependence of the asymmetry for negative-pion photoproduction on neutrons by linearly polarized photons has been measured for photon energies 260, 300, 350, 400, 450, and 500 MeV at center-of-mass angles 60°, 75°, 90°, 150°, and 120°. The results are compared with theoretical models of low-energy single-pion photoproduction. The observed asymmetry below 400 MeV shows good agreement with predictions of dispersion-theoretical models by Berends, Donnachie, and Weaver and by Schwela. The asymmetry values in the 400-500 MeV energy region suggest that smaller M1− amplitude is more favorable.

2 data tables match query

No description provided.

No description provided.


Polarization of the Recoil Proton from pi0 Photoproduction in Hydrogen

Maloy, J.O. ; Peterson, V.Z. ; Salandin, G.A. ; et al.
Phys.Rev. 139 (1965) B733-B746, 1965.
Inspire Record 944960 DOI 10.17182/hepdata.26657

The polarization of the recoil proton in neutral single-pion photoproduction from hydrogen, γ+p→p+π0, has been measured for pion center-of-mass angles near 90° at 7 photon energies from 450 to 900 MeV. The polarization rises to a maximum of 0.58 near 600 MeV and is still 0.42 at 900 MeV. The sign of the polarization is negative in the sense of k×q, where k is the photon momentum and q is the pion momentum. The measured values are given as functions of laboratory photon energy and c.m. pion angle as follows: 450 MeV, 109°, -0.16±0.14; 525 MeV, 84°, -0.36±0.19; 585 MeV, 86°, -0.58±0.15; 660 MeV, 77°, -0.51±0.17; 755 MeV, 76°, -0.55±0.15; 810 MeV, 89°, -0.45±0.17; 895 MeV, 90°, -0.42±0.16. The recoil protons were momentum-analyzed with a magnetic spectrometer. Nuclear emulsion was used as scatterer and detector. The emulsion technique is discussed in detail. The number of individual scatterings in emulsion used for each measurement varied between 750 and 1000.

1 data table match query

No description provided.


Recoil Proton Polarization in $\pi P$ Elastic Scattering at 547-{MeV}/c and 625-{MeV}/c

Seftor, C.J. ; Adrian, S.D. ; Briscoe, W.J. ; et al.
Phys.Rev.D 39 (1989) 2457-2463, 1989.
Inspire Record 282265 DOI 10.17182/hepdata.23234

The polarization of the recoil proton in π+p and π−p elastic scattering using a liquid-hydrogen target has been measured for backward angles at 547 and 625 MeV/c. The scattered pion and recoil proton were detected in coincidence using the large-acceptance spectrometer to detect and analyze the momentum of the pions and the JANUS polarimeter to identify and measure the polarization of the protons. Results from this experiment agree with other measurements of the recoil polarization, with analyzing-power data previously taken by this group, and with predictions of partial-wave analyses.

2 data tables match query

No description provided.

No description provided.


$\pi^- P$ Charge Exchange Analyzing Power From 547-{MeV}/c to 687-{MeV}/c

Wightman, J.A. ; Eichon, A.D. ; Kim, G.J. ; et al.
Phys.Rev.D 38 (1988) 3365-3374, 1988.
Inspire Record 270260 DOI 10.17182/hepdata.23237

The π−p charge-exchange analyzing power has been measured from 547 to 687 MeV/c in the center-of-mass angular range -0.9≤cosθ̃π≤0.9 using a transversely polarized target. The recoil neutron was detected in coincidence with a photon from π0 decay. The results are compared with the three recent partial-wave analyses (PWA’s); the VPI analysis is most consistent with our measured distributions except at 687 MeV/c where no PWA agrees with our data. The charge-exchange transversity cross sections are evaluated using the differential cross sections of Borcherding et al. These transversity cross sections are used in conjunction with earlier π±p data by our group to test the triangle inequalities which are a model-independent test of isospin invariance. Our data satisfy these inequalities everywhere; in contrast, Abaev et al. have reported a violation of more than 5 standard deviations at 685 MeV/c.

1 data table match query

No description provided.


Analyzing Power for $\pi^- P$ Charge Exchange and a Test of Isospin Invariance Up to $\eta$ Threshold

Wightman, J.A. ; Eichon, A.D. ; Kim, G.J. ; et al.
Phys.Rev.D 36 (1987) 3529-3532, 1987.
Inspire Record 255689 DOI 10.17182/hepdata.23322

The analyzing power for π−p→π0n has been measured at five incident momenta from 547 to 687 MeV/c using a transversely polarized target. Data were obtained with scintillation counters at 10 angles simultaneously covering the range −0.9≤cosθc.m.π≤0.9. Our results and those of Kim et al. are used for a model-independent test of isospin invariance which is based on the triangle inequalities applied to the transversity-up as well as the transversity-down cross sections. No evidence is found of isospin violation.

1 data table match query

No description provided.


Measurement of Polarized Target Asymmetry on $\gamma n \to \pi^- p$ Around the Second Resonance Region

Fujii, K. ; Hayashii, H. ; Iwata, S. ; et al.
Nucl.Phys.B 187 (1981) 53-70, 1981.
Inspire Record 156223 DOI 10.17182/hepdata.34260

The polarized target asymmetry for γ n→ π − p was measured over the second resonance region from 0.55 to 0.9 GeV at pion c.m. angles between 60° and 120°. A double-arm spectrometer was used with a deuterated butanol target to detect both the pion and the proton, thus considerably improving the data quality. Including the new data in the amplitude analysis, the radiative decay widths of three resonances were determined more accurately than before. The results are compared with various quark models.

7 data tables match query

PHOTON ENERGY IS IN THE NEUTRON REST FRAME.

PHOTON ENERGY IS IN THE NEUTRON REST FRAME.

PHOTON ENERGY IS IN THE NEUTRON REST FRAME.

More…

Measurement of the asymmetry for pi+ photoproduction from polarized protons between 300 and 900 mev

Arai, S. ; Fukui, S. ; Horikawa, N. ; et al.
Nucl.Phys.B 48 (1972) 397-414, 1972.
Inspire Record 84444 DOI 10.17182/hepdata.32778

The asymmetry of the cross section for π + photoproduction from a polarized butanol target has been measured at a c.m. angle 90° and photon energies between 300 and 900 MeV by a single-arm spectrometer detecting positive pions. Our results indicate that the asymmetry has clear positive peaks at photon energies 400 and 700 MeV with a deep valley at about 600 MeV. The general feature of the results is well reproduced by the phenomenological analyses made by Walker and ourselves; however, the best fit to the polarized target asymmetry data seems to give a somewhat different set of parameters from that given by Walker.

1 data table match query

No description provided.


The polarization of the proton from the process γ+p→p+$\pi^{0}$ in the region of the higher resonances

Querzoli, R. ; Salvini, G. ; Silverman, A. ;
Nuovo Cim. 19 (1961) 53-76, 1961.
Inspire Record 1185001 DOI 10.17182/hepdata.37767

The polarization of the recoil proton in the photoproduction process γ+p→p+π0 has been measured with the beam of the Frascati electrosynchrotron at an angle of 90° in the c.m. system, in the energy interval (500÷900) MeV. A counter technique has been used, and the polarization of the proton was revealed by the left to right asymmetry in the elastic scattering of the protons in a carbon target. The experimental results are given in Table III and in Fig. 10. A definite polarization is found, always of the same sign and equal to −0.4±.14, −0.63±.23, −0.6±.25, −0.57±.12, −0.38±.09, −0.5±.17, −0.5±.22 at the γ-ray energies of 560, 610, 650, 700, 750, 800, 850 MeV respectively. The discussion of these experimental results, together with the data of angular dstributions, allows to conclude that they are in agreement with the hypothesis that the second resonance is a transition (E 1,d 3/2) and the third one is a transition (E 2,f 3/2).

1 data table match query

No description provided.


Measurement of pi0 photoproduction on the proton from 550-MeV to 1500-MeV at GRAAL

The GRAAL collaboration Bartalini, O. ; Bellini, V. ; Bocquet, J.P. ; et al.
Eur.Phys.J.A 26 (2005) 399-419, 2005.
Inspire Record 703671 DOI 10.17182/hepdata.11281

Neutral pion photoproduction has been measured from 550 to 1500 MeV with the GRAAL facility, located at the ESRF in Grenoble. Differential cross-section and beam asymmetry have been measured over a wi

2 data tables match query

Measured differential angular distribution for incident photon energy 555 Mev.

Measured beam asymmetries for incident photon energy 551 Mev.