Structure of the Proton

Chambers, E.E. ; Hofstadter, R. ;
Phys.Rev. 103 (1956) 1454-1463, 1956.
Inspire Record 945003 DOI 10.17182/hepdata.26939

The structure and size of the proton have been studied by means of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, and 550 Mev. The range of laboratory angles examined has been 30° to 135°. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at (0.77±0.10) ×10−13 cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70×10−13 cm or an exponential with rms radius 0.80×10−13 cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.

1 data table match query

In the experiment just relative cross sections were measured. The absolute values were ascribed at each energy after multiplying experimental data by a co nstant factor to obtain the best fit with theory assuming the diffuse proton model with charge and magnetic moment rms radii 0.08 fm.. The values in the table are extracted from the graphs (see figs. 6 - 9) byZOV.


Proton Compton scattering at 0.55-to-4.5-gev energy and 0.12-to-1.0-(gev/c)-squared momentum transfer

Deutsch, M. ; Cleetus, K.J. ; Golub, L. ; et al.
Phys.Rev.D 8 (1973) 3828-3847, 1973.
Inspire Record 93270 DOI 10.17182/hepdata.22057

Results are presented on the elastic scattering of photons by protons. The incident photon energy ranged from 0.55 GeV to 4.5 GeV, and the four-momentum transfer t ranged from 0.12 to 1.0 (GeV/c)2. The data at large angles, 60°<θ*<115°, are characterized by a pronounced excitation of the D13(1518) resonance, a shoulder in the 1688-MeV mass region, and a precipitous drop thereafter in the cross section as a function of incident energy. The low-t data are characterized by a diffraction slope of 5 (GeV/c)−2. The data are inconsistent with the predictions of the vector-dominance model if the latter is restricted to ρ0, ω, and φ vector mesons.

1 data table match query

No description provided.


Differential Cross-Sections of the Proton Compton Scattering in the Energy Between 450-MeV and 950-MeV

Toshioka, K. ; Chiba, M. ; Kato, S. ; et al.
Nucl.Phys.B 141 (1978) 364-378, 1978.
Inspire Record 120614 DOI 10.17182/hepdata.34955

The differential cross sections of the proton Compton scattering around the second resonance have been measured at a c.m. angle of 90° for incident photon energies between 450 MeV and 950 MeV in steps of 50 MeV, and at an angle of 60° for energies between 600 MeV and 800 MeV. The results show that the peak of the 2nd resonance agrees with that of the pion photoproduction process. We also calculated the proton Compton scattering based on unitarity and fixed- t dispersion relations. The calculation describes well the data of the cross section and the recoil proton polarization.

1 data table match query

No description provided.


Compton scattering by the proton through Theta(CMS) = 75-degrees and 90-degrees in the Delta resonance region

Hünger, A ; Peise, J ; Robbiano, A ; et al.
Nucl.Phys.A 620 (1997) 385-416, 1997.
Inspire Record 458618 DOI 10.17182/hepdata.36349

Differential cross sections for Compton scattering by the proton have been measured in the energy interval between 200 and 500 MeV at scattering angles of θ cms = 75° and θ cms = 90° using the CATS, the CATS/TRAJAN, and the COPP setups with the Glasgow Tagger at MAMI (Mainz). The data are compared with predictions from dispersion theory using photo-meson amplitudes from the recent VPI solution SM95. The experiment and the theoretical procedure are described in detail. It is found that the experiment and predictions are in agreement as far as the energy dependence of the differential cross sections in the Δ-range is concerned. However, there is evidence that a scaling down of the resonance part of the M 1+ 3 2 photo-meson amplitude by (2.8 ± 0.9)% is required in comparison with the VPI analysis. The deduced value of the M 1+ 3 2 - photoproduction amplitude at the resonance energy of 320 MeV is: |M 1+ 3 2 | = (39.6 ± 0.4) × 10 −3 m π + −1 .

1 data table match query

No description provided.


Pi- p ELASTIC SCATTERING IN THE CMS ENERGY RANGE 1400-MeV TO 2000-MeV

Brody, A.D. ; Cashmore, R.J. ; Kernan, A. ; et al.
Phys.Rev.D 3 (1971) 2619, 1971.
Inspire Record 60976 DOI 10.17182/hepdata.4110

Total and differential cross sections for π−p elastic scattering are presented at 35 energies between 1400 and 2000 MeV.

1 data table match query

No description provided.


MEASUREMENT OF THE ASYMMETRY PARAMETER A IN PI- P ELASTIC AND CHARGE EXCHANGE SCATTERING AT PION ENERGIES T (PI) = 98-MEV, 238-MEV, 292-MEV, AND 310-MEV

Alder, J.c. ; Joseph, C. ; Perroud, J.p. ; et al.
Phys.Rev.D 27 (1983) 1040-1055, 1983.
Inspire Record 192365 DOI 10.17182/hepdata.23839

The asymmetry parameter A in π−p elastic scattering at incident pion laboratory kinetic energies Tπ of 98, 238, and 2922 MeV and in π−p charge-exchange scattering π−p→π0n at Tπ=238, 292, and 310 MeV have been measured over a wide range of scattering angles (typically from about 60° to 130° c.m.) with a polarized proton target. The data have been used in an energy-independent phase-shift analysis to improve the precision of the pion-nucleon phase shifts, to set new limits on violation of isospin conservation in the pion-nucleon S wave, and to confirm significant charge dependence in the P32 wave.

3 data tables match query

Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).

Axis error includes +- 5/5 contribution (BACKGROUND SUBTRACTION).

Axis error includes +- 5/5 contribution (BACKGROUND SUBTRACTION).


Quasi-free Compton Scattering and the Polarizabilities of the Neutron

Kossert, K. ; Camen, M. ; Wissmann, F. ; et al.
Eur.Phys.J.A 16 (2003) 259-273, 2003.
Inspire Record 599960 DOI 10.17182/hepdata.43752

Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $\oslash$ $\times$ 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at $\theta^{LAB}_\gamma=136.2^\circ$. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction $p(\gamma,\pi^+ n)$. The "free" proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be $\alpha-\beta= 9.8\pm 3.6(stat){}^{2.1}_1.1(syst)\pm 2.2(model)$ in units $10^{-4}fm^3$. In combination with the polarizability sum $\alpha +\beta=15.2\pm 0.5$ deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, $\alpha_n=12.5\pm 1.8(stat){}^{+1.1}_{-0.6}\pm 1.1(model)$ and $\beta_n=2.7\mp 1.8(stat){}^{+0.6}_{-1.1}(syst)\mp 1.1(model)$ are obtained. The backward spin polarizability of the neutron was determined to be $\gamma^{(n)}_\pi=(58.6\pm 4.0)\times 10^{-4}fm^4$.

1 data table match query

Energy dependence of the free-proton differential cross section.


First observation of Sigma- e- elastic scattering in the hyperon beam experiment WA89 at CERN.

The WA89 collaboration Adamovich, M.I. ; Aleksandrov, Yu.A. ; Barberis, D. ; et al.
Eur.Phys.J.C 8 (1999) 59-66, 1999.
Inspire Record 500379 DOI 10.17182/hepdata.43061

We have investigated the elastic scattering of high energy $\Sigma^-$ off electrons from carbon and copper targets using the CERN hyperon beam. Scattering events a

1 data table match query

No description provided.


Measurement of the Polarization Parameter in $\pi^- p$ Scattering at 291.5-{MeV} and 308-{MeV}

Alder, J.C. ; Perroud, J.P. ; Tran, M.T. ; et al.
Lett.Nuovo Cim. 23 (1978) 381, 1978.
Inspire Record 130236 DOI 10.17182/hepdata.37401

None

2 data tables match query

No description provided.

No description provided.


Measurement of the Sigma- charge radius by Sigma- electron elastic scattering.

The SELEX collaboration Gough Eschrich, Ivo M. ; Kruger, H. ; Simon, J. ; et al.
Phys.Lett.B 522 (2001) 233-239, 2001.
Inspire Record 558329 DOI 10.17182/hepdata.42898

The Sigma^- mean squared charge radius has been measured in the space-like Q^2 range 0.035-0.105 GeV^2/c^2 by elastic scattering of a Sigma^- beam off atomic electrons. The measurement was performed with the SELEX (E781) spectrometer using the Fermilab hyperon beam at a mean energy of 610 GeV/c. We obtain <r^2> = (0.61 +/- 0.12 (stat.) +/- 0.09 (syst.)) fm^2. The proton and pi^- charge radii were measured as well and are consistent with results of other experiments. Our result agrees with the recently measured strong interaction radius of the Sigma^-.

1 data table match query

Total systematic errors are given.