Measurement of the polarized structure function sigma(LT') for pion electroproduction in the Roper resonance region.

The CLAS collaboration Joo, K. ; Smith, L.C. ; Aznauryan, I.G. ; et al.
Phys.Rev.C 72 (2005) 058202, 2005.
Inspire Record 681275 DOI 10.17182/hepdata.25214

The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.

12 data tables match query

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.30 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.38 GeV.

More…

Neutral Pion Electroproduction in the Resonance Region at High $Q^2$

Villano, A.N. ; Stoler, P. ; Bosted, P.E. ; et al.
Phys.Rev.C 80 (2009) 035203, 2009.
Inspire Record 823260 DOI 10.17182/hepdata.54189

The process $ep \to e^{\prime}p^{\prime}\pi^0$ has been measured at $Q^2$ = 6.4 and 7.7 \ufourmomts in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center of mass frame considering the process $\gamma^{\ast}p \to p^{\prime}\pi^0$. Various details relating to the background subtractions, radiative corrections and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well known $\Delta(1232)$ resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios $R_{EM}$ and $R_{SM}$ along with the magnetic transition form factor $G_M^{\ast}$. It is found that the rapid fall off of the $\Delta(1232)$ contribution continues into this region of momentum transfer and that other resonances

45 data tables match query

Differential cross sections at Q**2=6.212 GeV**2, EPSILON=0.4411, W=1.312 GeV and COS(THETA(*))=-0.9 for the small SOS spectrometer.

Differential cross sections at Q**2=6.212 GeV**2, EPSILON=0.4411, W=1.312 GeV and COS(THETA(*))=-0.7 for the small SOS spectrometer.

Differential cross sections at Q**2=6.212 GeV**2, EPSILON=0.4411, W=1.312 GeV and COS(THETA(*))=-0.5 for the small SOS spectrometer.

More…