Photoproduction of pi+ mesons on polarized protons at photon energies between 0.5 and 2.2 gev

Althoff, K.H. ; Feller, P. ; Herr, H. ; et al.
Nucl.Phys.B 53 (1973) 9-18, 1973.
Inspire Record 84220 DOI 10.17182/hepdata.32593

The target asymmetry T = ( σ ↑ − σ ↓)/( σ ↑ + σ ↓) for the reaction γ p → π + n has been measured at the Bonn 2.5 GeV electron synchrotron for a pion c.m. angle of 40° and γ energies between 0.5 and 2.2 GeV. Butanol was used as the target material. About 35% of the protons could be polarized using the dynamic-polarization method in a continuous-flow cryostat operating at 1°K and 25 kG. The π + mesons were detected in a magnetic-spectrometer system. Considerable structure in the asymmetry was observed.

1 data table match query

Axis error includes +- 11/11 contribution.


Forward Photoproduction of Neutral Pions on Polarized Protons in the Third Resonance Region

Herr, H. ; Husmann, D. ; Jansen, W. ; et al.
Nucl.Phys.B 125 (1977) 157-161, 1977.
Inspire Record 118996 DOI 10.17182/hepdata.50398

Angular distributions of the target symmetry for the reaction γ + p → π 0 + p have been measured at the Bonn 2.5 GeV Electron Synchrotron at pion c.m. angles between 13° and 63° and photon energies of 1.0 and 1.1 GeV. The π 0 mesons were detected by their two decay photons with total absorption lead-glass Čerenkov counters. Butanol was used as target material in a continuous flow 3 He cryostat operating at 0.5 K and 25 kG. The π 0 counting rate from free protons in the butanol target was derived from the measurements of the differential cross section on hydrogen. The data are compared with data of other laboratories and the results of two recent partial-wave analyses.

1 data table match query

No description provided.


Photoproduction of Negative Pions on a Polarized Neutron Target in the Resonance Region

Althoff, K.H. ; Beckschulze, H. ; Conrad, R. ; et al.
Nucl.Phys.B 96 (1975) 497-508, 1975.
Inspire Record 99642 DOI 10.17182/hepdata.31932

At the Bonn 2.5 GeV electron synchrotron the first measurements of the target asymmetry for the reaction γ + n ↑ → π − + p have been performed. The negative pions were detected in a magnetic spectrometer at a constant pion c.m. angle of 40° and photon energies between 0.45 GeV and 2.0 GeV. Deuterated butanol was used as target material. The polarization of the deuterons was about 16%. The results show a significant difference from the previously measured π + asymmetry.

1 data table match query

No description provided.


Negative-pion photoproduction from neutrons by linearly polarized photons in the first resonance region

Kondo, K. ; Miyachi, T. ; Ukai, K. ; et al.
Phys.Rev.D 9 (1974) 529-533, 1974.
Inspire Record 93115 DOI 10.17182/hepdata.21954

The angular dependence of the asymmetry for negative-pion photoproduction on neutrons by linearly polarized photons has been measured for photon energies 260, 300, 350, 400, 450, and 500 MeV at center-of-mass angles 60°, 75°, 90°, 150°, and 120°. The results are compared with theoretical models of low-energy single-pion photoproduction. The observed asymmetry below 400 MeV shows good agreement with predictions of dispersion-theoretical models by Berends, Donnachie, and Weaver and by Schwela. The asymmetry values in the 400-500 MeV energy region suggest that smaller M1− amplitude is more favorable.

2 data tables match query

No description provided.

No description provided.


Polarization of the Recoil Proton from pi0 Photoproduction in Hydrogen

Maloy, J.O. ; Peterson, V.Z. ; Salandin, G.A. ; et al.
Phys.Rev. 139 (1965) B733-B746, 1965.
Inspire Record 944960 DOI 10.17182/hepdata.26657

The polarization of the recoil proton in neutral single-pion photoproduction from hydrogen, γ+p→p+π0, has been measured for pion center-of-mass angles near 90° at 7 photon energies from 450 to 900 MeV. The polarization rises to a maximum of 0.58 near 600 MeV and is still 0.42 at 900 MeV. The sign of the polarization is negative in the sense of k×q, where k is the photon momentum and q is the pion momentum. The measured values are given as functions of laboratory photon energy and c.m. pion angle as follows: 450 MeV, 109°, -0.16±0.14; 525 MeV, 84°, -0.36±0.19; 585 MeV, 86°, -0.58±0.15; 660 MeV, 77°, -0.51±0.17; 755 MeV, 76°, -0.55±0.15; 810 MeV, 89°, -0.45±0.17; 895 MeV, 90°, -0.42±0.16. The recoil protons were momentum-analyzed with a magnetic spectrometer. Nuclear emulsion was used as scatterer and detector. The emulsion technique is discussed in detail. The number of individual scatterings in emulsion used for each measurement varied between 750 and 1000.

1 data table match query

No description provided.


The Measurement of Polarized Target Asymmetry on gamma p --> pi0 p Below 1-GeV

Fukushima, M. ; Horikawa, N. ; Kajikawa, R. ; et al.
Nucl.Phys.B 136 (1978) 189-200, 1978.
Inspire Record 119548 DOI 10.17182/hepdata.35100

The polarized target asymmetry in the reaction γ p → π 0 p has been measured at c.m. angles of 30°, 80°, 105° and 120° for incident photon energies below 1 GeV. Two decay photons from π 0 were detected in coincidence at 30°, and at the other angles recoil protons and single photons from π 0 were detected. The results are compared with recent phenomenological analyses.

1 data table match query

No description provided.


The Measurement of Polarized Target Asymmetry on gamma p --> pi+ n Below 1.02-GeV

Fukushima, M. ; Horikawa, N. ; Kajikawa, R. ; et al.
Nucl.Phys.B 130 (1977) 486-504, 1977.
Inspire Record 119547 DOI 10.17182/hepdata.35243

The polarized target asymmetry for the process γ p → π + n has been measured for incident photon energies below 1.02 GeV over a range of c.m. angles from 40° to 160°. π + mesons from a polarized butanol target were detected by a magnetic spectrometer. The results are compared with predictions given by existing analyses. A tentative interpretation of the data is performed, and a larger contribution of S-wave resonances is suggested. The photocouplings of dominant resonances were hardly changed by the inclusion of new data and they seem to be almost uniquely determined.

1 data table match query

No description provided.


Rho Production by Virtual Photons

Joos, P. ; Ladage, A. ; Meyer, H. ; et al.
Nucl.Phys.B 113 (1976) 53-92, 1976.
Inspire Record 108749 DOI 10.17182/hepdata.35708

The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.

1 data table match query

DIPION CHANNEL CROSS SECTION.


Angular dependence of the recoil proton polarization from the reaction $\gamma p \to \pi^0 p$ for photon energies between 360-MeV and 1200-MeV

Blum, P. ; Brinckmann, P. ; Brockmann, R. ; et al.
BONN-PI-1-105, 1970.
Inspire Record 1085812 DOI 10.17182/hepdata.70500

None

1 data table match query

No description provided.


MEASUREMENT OF THE ASYMMETRY PARAMETER A IN PI- P ELASTIC AND CHARGE EXCHANGE SCATTERING AT PION ENERGIES T (PI) = 98-MEV, 238-MEV, 292-MEV, AND 310-MEV

Alder, J.c. ; Joseph, C. ; Perroud, J.p. ; et al.
Phys.Rev.D 27 (1983) 1040-1055, 1983.
Inspire Record 192365 DOI 10.17182/hepdata.23839

The asymmetry parameter A in π−p elastic scattering at incident pion laboratory kinetic energies Tπ of 98, 238, and 2922 MeV and in π−p charge-exchange scattering π−p→π0n at Tπ=238, 292, and 310 MeV have been measured over a wide range of scattering angles (typically from about 60° to 130° c.m.) with a polarized proton target. The data have been used in an energy-independent phase-shift analysis to improve the precision of the pion-nucleon phase shifts, to set new limits on violation of isospin conservation in the pion-nucleon S wave, and to confirm significant charge dependence in the P32 wave.

3 data tables match query

Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).

Axis error includes +- 5/5 contribution (BACKGROUND SUBTRACTION).

Axis error includes +- 5/5 contribution (BACKGROUND SUBTRACTION).