Measurements of the Deuteron and Proton Magnetic Form-factors at Large Momentum Transfers

Bosted, Peter E. ; Katramatou, A.T. ; Arnold, R.G. ; et al.
Phys.Rev.C 42 (1990) 38-64, 1990.
Inspire Record 283632 DOI 10.17182/hepdata.26165

Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.

1 data table match query

The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.


Rho Production by Virtual Photons

Joos, P. ; Ladage, A. ; Meyer, H. ; et al.
Nucl.Phys.B 113 (1976) 53-92, 1976.
Inspire Record 108749 DOI 10.17182/hepdata.35708

The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.

1 data table match query

DIPION CHANNEL CROSS SECTION.


Single pi+ electroproduction on the proton in the first and second resonance regions at 0.25-GeV**2 < Q**2 < 0.65-GeV**2 using CLAS.

The CLAS collaboration Egiyan, H. ; Aznauryan, I.G. ; Burkert, V.D. ; et al.
Phys.Rev.C 73 (2006) 025204, 2006.
Inspire Record 707883 DOI 10.17182/hepdata.6748

The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.

75 data tables match query

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.

More…

Precise pion electroproduction in the p (e, e-prime pi+) n reaction at W = 1125-MeV

Blomqvist, K.I. ; Boeglin, W.U. ; Böhm, R. ; et al.
Z.Phys.A 353 (1996) 415-421, 1996.
Inspire Record 428951 DOI 10.17182/hepdata.16502

The reactione+p →> e+π++n at c.m. energyW=1125MeV and momentum transfer Q2=0.117GeV2/c2 has been measured. The transverse and longitudinal structure functions have been separated by varying the polarization of the virtual photon (Rosenbluth plot) with a 3 to 4% error. In addition the longitudinal-transverse interference term has been determined measuring the right-left asymmetry with an accuracy of 3%. The experimental data are compared to model calculations, and the sensitivity of the results to the axial and pion formfactors is discussed.

2 data tables match query

Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).

Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).