Pion-Nucleon Total Cross Sections from 0.5 to 2.65 GeV/c

Carter, A.A. ; Riley, K.F. ; Tapper, R.J. ; et al.
Phys.Rev. 168 (1968) 1457-1465, 1968.
Inspire Record 54182 DOI 10.17182/hepdata.250

Total cross sections of π+ and π− mesons on protons and deuterons have been measured in a transmission experiment to relative accuracies of ±0.2% over the laboratory momentum range 0.46-2.67 GeV/c. The systematic error is estimated to be about ±0.5% over most of the range, increasing to about ±2% near both ends. Data have been obtained at momentum intervals of 25-50 MeV/c with a momentum resolution of ±0.6%. No new structure is observed in the π±p total cross sections, but results differ in several details from previous experiments. From 1-2 GeV/c, where systematic erros are the smallest, the total cross section of π− mesons on deuterons is found to be consistently higher than that of π+ mesons by (1.3±0.3)%; about half of this difference may be understood in terms of Coulomb-barrier effects. The πd and πN total cross sections are used to check the validity of the Glauber theory. Substantial disagreements (up to 2 mb) are observed, and the conclusion is drawn that the Glauber theory is inadequate in this momentum range.

2 data tables match query

No description provided.

No description provided.


Measurement of Differential Cross-Sections for Radiative Pion-Proton Capture in the Second Resonance Region

Weiss, A.J. ; Blasberg, D.J. ; Comiso, J.C. ; et al.
Nucl.Phys.B 101 (1975) 1-18, 1975.
Inspire Record 2234 DOI 10.17182/hepdata.36075

Differential cross-section measurements for π − p → γ n, consisting of three angular distributions at 618, 676 and 718 MeV/ c , and the energy dependence at θ γ = 90° for seven incident pion momenta between 502 and 888 MeV/ c , are presented. Our data qualitatively support recent multipole analyses. Agreement with the Scheffler et al. results for the inverse reaction, γ n → π − p, using a ( π − -recoil p) coincidence technique is good excluding a large violation of time reversal invariance. The agreement with γ n → π − p data obtained using the R ( π − / π + ) ratio technique or a deuterium bubble chamber is only qualitative.

1 data table match query

Axis error includes +- 6.6/6.6 contribution.


Polarized target asymmetry in pion proton bremsstrahlung at 298-MeV

Bosshard, A. ; Amsler, Claude ; Bistirlich, J.A. ; et al.
Phys.Rev.Lett. 64 (1990) 2619-2622, 1990.
Inspire Record 303404 DOI 10.17182/hepdata.22827

First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.

2 data tables match query

No description provided.

No description provided.


Measurement of Pion Proton Bremsstrahlung for Pions at 299-{MeV}

Meyer, C.A. ; Amsler, Claude ; Bosshard, A. ; et al.
Phys.Rev.D 38 (1988) 754-767, 1988.
Inspire Record 268867 DOI 10.17182/hepdata.23271

We have measured the fivefold differential cross section d5σ/dΩπdΩγdEγ for the process π+p→π+pγ with incident pions of energy 299 MeV. The angular regions for the outgoing pions (55°≤θlabπ≤95°), and photons (θlabγ=241°±10°) in coplanar geometry are selected to maximize the sensitivity to the radiation from the magnetic dipole moment of the Δ++(1232) resonance. At low photon energies, the data agree with the soft-photon approximation to pion-proton bremsstrahlung. At forward pion angles the data agree with older data and with the latest theoretical calculations for 2.3μp≤μΔ≤3.3μp. However at more backward pion angles where no data existed, the predictions fail.

2 data tables match query

No description provided.

No description provided.