Total hadronic photoabsorption cross-section on nuclei in the nucleon resonance region

Bianchi, N. ; Muccifora, V. ; De Sanctis, E. ; et al.
Phys.Rev.C 54 (1996) 1688-1699, 1996.
Inspire Record 405665 DOI 10.17182/hepdata.37952

The total photoabsorption cross section for Li7, C, Al, Cu, Sn, Pb has been measured in the energy range 300–1200 MeV at Frascati with the jet-target tagged photon beam. A 4π NaI crystal detector and a lead-glass shower counter were used, respectively, to measure hadronic events and to reject the electromagnetic background. Data above 600 MeV clearly indicate a broadening of higher nucleon resonance peaks in nuclei and a reduction of the absolute value of the cross section per nucleon with respect to the free-nucleon case. This large broadening suggests a strong influence of the nuclear medium in the resonance propagation and interaction, while the systematic reduction of the measured cross sections might be due to a depletion of the resonance excitation strength and to the onset of the shadowing effect around 1 GeV. Moreover, our systematic study indicates that also the Δ-resonance excitation parameters are not the same for all nuclei, being its mass and width increasing with the nuclear density. © 1996 The American Physical Society.

1 data table match query

The average (GAMMA NUCLEON --> X) is computed each nucleus cross section datum with its statistical error.


Measurement of the polarized structure function sigma(LT') for pion electroproduction in the Roper resonance region.

The CLAS collaboration Joo, K. ; Smith, L.C. ; Aznauryan, I.G. ; et al.
Phys.Rev.C 72 (2005) 058202, 2005.
Inspire Record 681275 DOI 10.17182/hepdata.25214

The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.

12 data tables match query

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.30 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.38 GeV.

More…

Single pi+ electroproduction on the proton in the first and second resonance regions at 0.25-GeV**2 < Q**2 < 0.65-GeV**2 using CLAS.

The CLAS collaboration Egiyan, H. ; Aznauryan, I.G. ; Burkert, V.D. ; et al.
Phys.Rev.C 73 (2006) 025204, 2006.
Inspire Record 707883 DOI 10.17182/hepdata.6748

The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.

75 data tables match query

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.

More…

a_1(1260) dominance in the process e+e- \to 4\pi at energies 1.05--1.38 GeV

The CMD-2 collaboration Akhmetshin, R.R. ; Anashkin, E.V. ; Arpagaus, M. ; et al.
Phys.Lett.B 466 (1999) 392-402, 1999.
Inspire Record 483994 DOI 10.17182/hepdata.50145

First results of the study of the process e+e- \to 4\pi by the CMD-2 collaboration at VEPP-2M are presented for the energy range 1.05--1.38 GeV. Using an integrated luminosity of 5.8 pb^{-1}, energy dependence of the processes e+e- \to \pi^+\pi^- 2\pi^0 and e+e- \to 2\pi^+ 2\pi^- has been measured. Analysis of the differential distributions demonstrates the dominance of the a_1\pi and \omega\pi intermediate states. Upper limits for the contributions of other alternative mechanisms are also placed.

3 data tables match query

Energy dependence of the cross section for the 2PI+ 2PI- final state. Statistical errors only.

Energy dependence of the cross section for the PI+ PI- 2PI0 final state. Statistical errors only.

Energy dependence of the cross section for the OMEGA PI0 final state. Statistical errors only.


Differential Cross-Sections for the pi0 Photoproduction at Theta (CM) = 90-Degrees and K (Lab) = 380-MeV-820-MeV

Jung, M. ; Kattein, J. ; Leu, P. ; et al.
BONN-HE-76-15, 1976.
Inspire Record 111677 DOI 10.17182/hepdata.50235

None

1 data table match query

No description provided.


Left-right Asymmetry in Inverse $\pi^-$ Photoproduction From a Transversely Polarized Proton Target

Kim, G.J. ; Adrian, S.D. ; Arends, J. ; et al.
Phys.Rev.Lett. 56 (1986) 1779-1782, 1986.
Inspire Record 232117 DOI 10.17182/hepdata.20259

Accurate measurements of the left-right asymmetry in π−p→γn at pπ=427−625 MeV/c with a transversely polarized target are reported. Results are compared with the predictions from the Arai and Fujii single-pion photoproduction partial-wave analysis and with data on the inverse process measured with a deuterium target. The agreement is poor, casting doubt on the correctness of the value for the radiative-decay amplitude of the neutral Roper resonance now in use.

3 data tables match query

No description provided.

No description provided.

No description provided.


Polarized target asymmetry in pion proton bremsstrahlung at 298-MeV

Bosshard, A. ; Amsler, Claude ; Bistirlich, J.A. ; et al.
Phys.Rev.Lett. 64 (1990) 2619-2622, 1990.
Inspire Record 303404 DOI 10.17182/hepdata.22827

First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.

2 data tables match query

No description provided.

No description provided.


Charged-pi photoproduction at 180 degress in the energy range between 300 and 1200 mev

Fujii, T. ; Okuno, H. ; Orito, S. ; et al.
Phys.Rev.Lett. 26 (1971) 1672-1675, 1971.
Inspire Record 68981 DOI 10.17182/hepdata.21616

The differential cross sections at 180° for the reactions γ+p→π++n and γ+n→π−+p were measured using a magnetic spectrometer to detect π± mesons. In order to reduce the spread of energy resolution due to the nucleon motion inside the deuteron, a photon difference method was employed with a 50-MeV step for the reaction γ+n→π−+p. The data show structures at the second- and the third-resonance regions for both reactions. A simple phenomenological analysis was made for fitting the data, and the results are compared with those of previous analyses.

2 data tables match query

No description provided.

No description provided.


Negative-pion photoproduction from neutrons by linearly polarized photons in the first resonance region

Kondo, K. ; Miyachi, T. ; Ukai, K. ; et al.
Phys.Rev.D 9 (1974) 529-533, 1974.
Inspire Record 93115 DOI 10.17182/hepdata.21954

The angular dependence of the asymmetry for negative-pion photoproduction on neutrons by linearly polarized photons has been measured for photon energies 260, 300, 350, 400, 450, and 500 MeV at center-of-mass angles 60°, 75°, 90°, 150°, and 120°. The results are compared with theoretical models of low-energy single-pion photoproduction. The observed asymmetry below 400 MeV shows good agreement with predictions of dispersion-theoretical models by Berends, Donnachie, and Weaver and by Schwela. The asymmetry values in the 400-500 MeV energy region suggest that smaller M1− amplitude is more favorable.

2 data tables match query

No description provided.

No description provided.


Exclusive measurements of pi+- p --> pi+ pi+- n near threshold.

The CHAOS collaboration Kermani, M. ; Amaudruz, P.A. ; Bonutti, F. ; et al.
Phys.Rev.C 58 (1998) 3419-3430, 1998.
Inspire Record 483005 DOI 10.17182/hepdata.25726

The pion induced pion production reactions π±p→π+π±n were studied at projectile incident energies of 223, 243, 264, 284, and 305 MeV, using a cryogenic liquid hydrogen target. The Canadian High Acceptance Orbit Spectrometer was used to detect the two outgoing pions in coincidence. The experimental results are presented in the form of single differential cross sections. Total cross sections obtained by integrating the differential quantities are also reported. In addition, the invariant mass distributions from the (π+π−) channel were fitted to determine the parameters for an extended model based on that of Oset and Vicente-Vacas. We find the model parameters obtained from fitting the (π+π−) data do not describe the invariant mass distributions in the (π+π+) channel.

2 data tables match query

Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).

Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).