Photoproduction of Neutral Pions from Hydrogen at Forward Angles from 240 to 480 Mev

McDonald, W.S. ; Peterson, V.Z. ; Corson, D.R. ;
Phys.Rev. 107 (1957) 577-585, 1957.
Inspire Record 48187 DOI 10.17182/hepdata.26895

Recoil protons from the process γ+p→p+π0 have been detected by nuclear emulsions placed within a hydrogen-gas target and used to measure the differential cross section for production of neutral pions. In this manner protons of energies as low as 5 Mev can be detected at laboratory angles corresponding to emission of a pion at center-of-momentum (c.m.) angles as low as 26°. This experiment thus supplements that of Oakley and Walker which is in the same range of photon energies (240-480 Mev), but is restricted to pion c.m. angles greater than about 70° owing to higher minimum detectable proton energy. Common experimental points provide intercomparison of absolute values. Angular distributions are analyzed in the form dσdΩ=A+Bcosθ+Ccos2θ in the c.m. system. The combined Oakley-Walker and present data give the average value of the ratio AC as -1.60±0.10 in the energy range from 260 to 450 Mev. The coefficient B, which gives the front-back asymmetry, passes through zero below the resonance energy of 320 Mev and is positive at higher energies. These results are consistent with magnetic dipole absorption leading to a state of the pion-nucleon system of angular momentum 32, together with a finite amount of S-wave interference.

1 data table match query

Axis error includes +- 7.3/7.3 contribution.


Measurement of pi- p --> pi0 pi0 n from threshold to p(pi-) 750-MeV/c.

The Crystal Ball collaboration Prakhov, S. ; Nefkens, B.M.K. ; Allgower, C.E. ; et al.
Phys.Rev.C 69 (2004) 045202, 2004.
Inspire Record 647544 DOI 10.17182/hepdata.25355

Reaction π−p→π0π0n has been measured with high statistics in the beam momentum range 270–750MeV∕c. The data were obtained using the Crystal Ball multiphoton spectrometer, which has 93% of 4π solid angle coverage. The dynamics of the π−p→π0π0n reaction and the dependence on the beam energy are displayed in total cross sections, Dalitz plots, invariant-mass spectra, and production angular distributions. Special attention is paid to the evaluation of the acceptance that is needed for the precision determination of the total cross section σt(π−p→π0π0n). The energy dependence of σt(π−p→π0π0n) shows a shoulder at the Roper resonance [i.e., the N(1440)12+], and there is also a maximum near the N(1520)32−. It illustrates the importance of these two resonances to the π0π0 production process. The Dalitz plots are highly nonuniform; they indicate that the π0π0n final state is dominantly produced via the π0Δ0(1232) intermediate state. The invariant-mass spectra differ much from the phase-space distributions. The production angular distributions are also different from the isotropic distribution, and their structure depends on the beam energy. For beam momenta above 550MeV∕c, the density distribution in the Dalitz plots strongly depends on the angle of the outgoing dipion system (or equivalently on the neutron angle). The role of the f0(600) meson (also known as the σ) in π0π0n production remains controversial.

2 data tables match query

Measured total cross section. Statistical errors only.

Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 355 to 472 MeV/c. Statistical errors only.