Pion and kaon pair production in photon-photon collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 57 (1986) 404, 1986.
Inspire Record 228072 DOI 10.17182/hepdata.20204

We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.

3 data tables match query

Data read from graph. Additional overall systematic error 20% not included.

Data read from graph. Additional overall systematic error 20% not included.

Data read from graph. Additional overall systematic error 20% not included.


Measurement of exclusive rho+ rho- production in high-Q**2 two-photon collisions at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 597 (2004) 26-38, 2004.
Inspire Record 654177 DOI 10.17182/hepdata.48589

Exclusive rho^+ rho^- production in two-photon collisions involving a single highly-virtual photon is studied with data collected at LEP at centre-of-mass energies 89 GeV < \sqrt{s} < 209 GeV with a total integrated luminosity of 854.7 pb^-1. The cross section of the process gamma gamma^* -> rho^+ rho^- is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 1.2 GeV^2 < Q^2 < 30 GeV^2 and 1.1 GeV < W_gg < 3 GeV. The \rho^+\rho^- production cross section is found to be of the same magnitude as the cross section of the process gamma gamma^* -> rho^0 rho^0, measured in the same kinematic region by L3, and to have similar W_gg and Q^2 dependences.

9 data tables match query

Cross sections for the reaction E+ E- --> E+ E- RHO+ RHO-. The differentialcross sections are corrected to the centre of each bin.

Cross sections for the two photon production of RHO+ RHO-.

Differential cross section for the process E+ E- --> E+ E- (RHO+ PI- PI0 + RHO+ RHO- PI0 PI0) corrected to bin centre.

More…

Compton scattering by the proton through Theta(CMS) = 75-degrees and 90-degrees in the Delta resonance region

Hünger, A ; Peise, J ; Robbiano, A ; et al.
Nucl.Phys.A 620 (1997) 385-416, 1997.
Inspire Record 458618 DOI 10.17182/hepdata.36349

Differential cross sections for Compton scattering by the proton have been measured in the energy interval between 200 and 500 MeV at scattering angles of θ cms = 75° and θ cms = 90° using the CATS, the CATS/TRAJAN, and the COPP setups with the Glasgow Tagger at MAMI (Mainz). The data are compared with predictions from dispersion theory using photo-meson amplitudes from the recent VPI solution SM95. The experiment and the theoretical procedure are described in detail. It is found that the experiment and predictions are in agreement as far as the energy dependence of the differential cross sections in the Δ-range is concerned. However, there is evidence that a scaling down of the resonance part of the M 1+ 3 2 photo-meson amplitude by (2.8 ± 0.9)% is required in comparison with the VPI analysis. The deduced value of the M 1+ 3 2 - photoproduction amplitude at the resonance energy of 320 MeV is: |M 1+ 3 2 | = (39.6 ± 0.4) × 10 −3 m π + −1 .

1 data table match query

No description provided.


DIFFERENTIAL CROSS-SECTION FOR PI- P ---> GAMMA N FROM 427-MEV/C TO 625-MEV/C

Kim, G.J. ; Arends, J. ; Briscoe, W.J. ; et al.
Phys.Rev.D 40 (1989) 244-247, 1989.
Inspire Record 285141 DOI 10.17182/hepdata.23110

Differential cross sections for π−p→γn have been determined from 427 to 625 MeV/c, mainly at 90° and 110° c.m. The data were obtained by combining measurements of the Panofsky ratio in flight with known charge-exchange cross sections. The results are compared with γn→π−p data derived from γd experiments; the difference is typically 30%. The radiative decay amplitudes of neutral πN resonances are therefore uncertain by at least 30%.

3 data tables match query

Charge exchange cross section from PWA.

PI- P --> GAMMA N cross section.

GAMMA N --> PI- P cross section calculated using detailed balance.