Version 2
Measurement of the pion form factor in the energy range 1.04-GeV - 1.38-GeV with the CMD-2 detector.

The CMD-2 collaboration Aul'chenko, V.M. ; Akhmetshin, R.R. ; Banzarov, V.Sh. ; et al.
JETP Lett. 82 (2005) 743-747, 2005.
Inspire Record 712216 DOI 10.17182/hepdata.41807

The cross section for the process $e^+e^-\to\pi^+\pi^-$ is measured in the c.m. energy range 1.04-1.38 GeV from 995 000 selected collinear events including 860000 $e^+e^-$ events, 82000 $\mu^+\mu^-$ events, and 33000 $\pi^+\pi^-$ events. The systematic and statistical errors of measuring the pion form factor are equal to 1.2-4.2 and 5-13%, respectively.

1 data table match query

Measured value of the pion form factor with statistical errors only.


Version 2
Electromagnetic Pion Form-Factor in the Timelike Region

Barkov, L.M. ; Chilingarov, A.G. ; Eidelman, S.I. ; et al.
Nucl.Phys.B 256 (1985) 365-384, 1985.
Inspire Record 221309 DOI 10.17182/hepdata.6886

The pion electromagnetic form factor has been measured at the VEPP-2M collider in the c.m. energy range 360 MeV–1400 MeV with the detectors OLYA and CMD. On the basis of all available data for the pion form factor collected in the timelike region, the following values for ρ-meson parameters were obtained: m ρ = 775.9 ± 1.1 MeV, σ ρ = 150.5 ± 3.0 MeV. The ω-meson branching ratio into π + π − pair, electromagnetic radius of the pion, ππ scattering length in the P-wave and the strong interaction contribution to the muon ( g − 2) value were found to be B ωππ = (2.3 ± 0.4)%, 〈 r π 2 〉 = 0.422 ± 0.013 fm 2 , a 1 1 = 0.033 ± 0.033m π −3 , a H = (68.4 ± 1.1) × 10 −9 .

2 data tables match query

No description provided.

Experimental data from the OLYA detector


Measurement of the polarization parameter P in elastic π+p scattering at 335, 370, and 410 MeV

Bekrenev, V.S. ; Beloglazov, Yu.A. ; Gaditskii, V.G. ; et al.
JETP Lett. 35 (1982) 148, 1982.
Inspire Record 1408359 DOI 10.17182/hepdata.70446

None

3 data tables match query

No description provided.

No description provided.

No description provided.


INVESTIGATION OF THE PROCESS E+ E- ---> E+ E- GAMMA IN THE ENERGY REGION 0.64-GEV - 1.40-GEV. (IN RUSSIAN)

Bukin, A.D. ; Kurdadze, L.M. ; Lelchuk, M.Yu. ; et al.
Yad.Fiz. 35 (1982) 1444-1447, 1982.
Inspire Record 182031 DOI 10.17182/hepdata.37152

None

2 data tables match query

No description provided.

No description provided.


Radiative pi0 photoproduction on protons in the Delta+(1232) region

Schumann, S. ; Boillat, B. ; Downie, E.J. ; et al.
Eur.Phys.J.A 43 (2010) 269-282, 2010.
Inspire Record 843314 DOI 10.17182/hepdata.54377

The reaction gamma p -> p pi0 gamma' has been measured with the Crystal Ball / TAPS detectors using the energy-tagged photon beam at the electron accelerator facility MAMI-B. Energy and angular differential cross sections for the emitted photon gamma' and angular differential cross sections for the pi0 have been determined with high statistics in the energy range of the Delta+(1232) resonance. Cross sections and the ratio of the cross section to the non-radiative process gamma p -> p pi0 are compared to theoretical reaction models, having the anomalous magnetic moment kappa_Delta+ as free parameter. As the shape of the experimental distributions is not reproduced in detail by the model calculations, currently no extraction of kappa_Delta+ is feasible.

7 data tables match query

Total cross section for the background reaction GAMMA P --> P PI0.

Total cross section for the background reaction GAMMA P --> P PI0 PI0.

Differential cross section as a function of the emitted photon energy for the reaction GAMMA P --> P PI0 GAMMA at beam energy 450 MeV.

More…

Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

The CLAS collaboration Dharmawardane, K.V. ; Kuhn, S.E. ; Bosted, Peter E. ; et al.
Phys.Lett.B 641 (2006) 11-17, 2006.
Inspire Record 717523 DOI 10.17182/hepdata.6726

We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

7 data tables match query

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3100 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3300 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3500 GeV.

More…

Measurement of the polarized structure function sigma(LT') for pion electroproduction in the Roper resonance region.

The CLAS collaboration Joo, K. ; Smith, L.C. ; Aznauryan, I.G. ; et al.
Phys.Rev.C 72 (2005) 058202, 2005.
Inspire Record 681275 DOI 10.17182/hepdata.25214

The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.

8 data tables match query

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.38 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.

More…

Single pi+ electroproduction on the proton in the first and second resonance regions at 0.25-GeV**2 < Q**2 < 0.65-GeV**2 using CLAS.

The CLAS collaboration Egiyan, H. ; Aznauryan, I.G. ; Burkert, V.D. ; et al.
Phys.Rev.C 73 (2006) 025204, 2006.
Inspire Record 707883 DOI 10.17182/hepdata.6748

The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.

75 data tables match query

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.

More…

Study of the Processes e+ e- --> eta gamma, e+ e- --> pi0 gamma --> 3 gamma in the c.m. Energy Range 600--1380 MeV at CMD-2

The CMD-2 collaboration Akhmetshin, R.R. ; Aulchenko, V.M. ; Banzarov, V.Sh. ; et al.
Phys.Lett.B 605 (2005) 26-36, 2005.
Inspire Record 658856 DOI 10.17182/hepdata.41864

The processes e+ e- --> eta gamma, e+ e- --> pi0 gamma --> 3 gamma have been studied in the c.m. energy range 600--1380 MeV with the CMD-2 detector. The following branching ratios have been determined: Br(rho --> eta gamma) = (3.21 +- 1.39 +- 0.20)x 10^{-4}; Br(omega --> eta gamma) = (4.44 + 2.29 -1.83 +- 0.28)x 10^{-4}; Br(phi --> eta gamma) = (1.373 +- 0.014 +- 0.085)x 10^{-2}; Br(rho --> pi0 gamma) = (6.21 +1.28 - 1.18 +- 0.39)x 10^{-4}; Br(omega --> pi0 gamma) = (9.06 +- 0.20 +- 0.57)x 10^{-2}; Br(phi --> pi0 gamma) = (1.258 +- 0.037 +- 0.077)x 10^{-3};

2 data tables match query

Born cross section for the process E+ E- --> ETA GAMMA.

Born cross section for the process E+ E- --> PI0 GAMMA.


Measurement of pi- p --> pi0 pi0 n from threshold to p(pi-) 750-MeV/c.

The Crystal Ball collaboration Prakhov, S. ; Nefkens, B.M.K. ; Allgower, C.E. ; et al.
Phys.Rev.C 69 (2004) 045202, 2004.
Inspire Record 647544 DOI 10.17182/hepdata.25355

Reaction π−p→π0π0n has been measured with high statistics in the beam momentum range 270–750MeV∕c. The data were obtained using the Crystal Ball multiphoton spectrometer, which has 93% of 4π solid angle coverage. The dynamics of the π−p→π0π0n reaction and the dependence on the beam energy are displayed in total cross sections, Dalitz plots, invariant-mass spectra, and production angular distributions. Special attention is paid to the evaluation of the acceptance that is needed for the precision determination of the total cross section σt(π−p→π0π0n). The energy dependence of σt(π−p→π0π0n) shows a shoulder at the Roper resonance [i.e., the N(1440)12+], and there is also a maximum near the N(1520)32−. It illustrates the importance of these two resonances to the π0π0 production process. The Dalitz plots are highly nonuniform; they indicate that the π0π0n final state is dominantly produced via the π0Δ0(1232) intermediate state. The invariant-mass spectra differ much from the phase-space distributions. The production angular distributions are also different from the isotropic distribution, and their structure depends on the beam energy. For beam momenta above 550MeV∕c, the density distribution in the Dalitz plots strongly depends on the angle of the outgoing dipion system (or equivalently on the neutron angle). The role of the f0(600) meson (also known as the σ) in π0π0n production remains controversial.

2 data tables match query

Measured total cross section. Statistical errors only.

Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 355 to 472 MeV/c. Statistical errors only.