Measurement of the Radiative Width of the A(2) (1320) in Two Photon Interactions

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Gerhards, R. ; et al.
Z.Phys.C 31 (1986) 537, 1986.
Inspire Record 228876 DOI 10.17182/hepdata.15859

The reactione+e−→e+e− A2 (1320) has been observed by detecting the decayA2→π+,π-π0. The two-photon width of theA2 has been measured to be Г(A2→γγ)=(0.09±0.27 (stat)±0.16 (syst)) keV. The cross section σ(γγ→π+,π-π0 has been determined outside theA2 resonance region.

1 data table match query

Data read off a graph.


Search for Two Photon Production of Resonances Decaying Into $K \bar{K}$ and $K \bar{K} \pi$

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Z.Phys.C 29 (1985) 189, 1985.
Inspire Record 220941 DOI 10.17182/hepdata.16018

An analysis of the production ofKS0KS0 andK±Ks0π∓ by two quasi-real photons is presented. The cross section forγγ→K0\(\overline {K^0 } \), which is given for the γγ invariant mass range fromK\(\bar K\) threshold to 2.5 GeV, is dominated by thef′(1525) resonance and an enhancement near theK\(\bar K\) threshold. Upper limits on the product of the two-photon width times the branching ratio intoK\(\bar K\) pairs are given forΘ(1700),h(2030), and ξ(2220). For exclusive two-photon production ofK±Ks0π∓ no significant signal was observed. Upper limits are given on the cross section ofγγ→K+\(\overline {K^0 } \)π− orK−K0π+ between 1.4 and 3.2 GeV and on the product of the γγ width times the branching ratio into theK\(\bar K\)π final states for theηc(2980) and the ι(1440), yieldingΓ(γγ)→i(1440))·BR(i(1440)→K\(\bar K\)π<2.2 keV at 95% C.L.

1 data table match query

Data read from graph.. Corrected for the angular distribution, which is assumed to be sin(theta)**4 for W > 1.14 GeV and isotropic in the first bin.


Production of $K \bar{K}$ Pairs in Photon-photon Collisions and the Excitation of the Tensor Meson F-prime (1515)

The TASSO collaboration Althoff, M. ; Brandelik, R. ; Braunschweig, W. ; et al.
Phys.Lett.B 121 (1983) 216-222, 1983.
Inspire Record 181468 DOI 10.17182/hepdata.30814

We have observed exclusive production of K + K − and K S O K S O pairs and the excitation of the f′(1515) tensor meson in photon-photon collisions. Assuming the f′ to be production in a helicity 2 state, we determine Λ( f ′ → γγ) B( f ′ → K K ) = 0.11 ± 0.02 ± 0.04 keV . The non-strange quark of the f′ is found to be less than 3% (95% CL). For the θ(1640) we derive an upper limit for the product Λ(θ rarr; γγ K K ) < 0.03 keV (95% CL ) .

2 data tables match query

Data read from graph.. Errors are the square roots of the number of events.

Data read from graph.. Errors are the square roots of the number of events.


Measurement of the Two Photon Reaction $\gamma \gamma \to \pi^+ \pi^- \pi^+ \pi^-$ at Large Values of $Q^2$

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 41 (1988) 353-357, 1988.
Inspire Record 250570 DOI 10.17182/hepdata.15557

The process γγ→π+π−π+π− has been investigated in reactions of the typee+e−→e+e−π+π−π+π− in the single tag mode. The range of the four momentum squared of one of the virtual photons was 0.28 GeV2/c2≦Q2≦3.6 GeV2/c2, the average being 〈Q2〉=0.92 GeV2/c2; the other photon was quasi real. The reaction is mainly described by the channels γγ→ρ0ρ0 and γγ→4π (phase space), occuring with about equal probability. TheQ2-dependence of the cross section is in agreement with the ρ form factor.

1 data table match query

Data read from graph.. Additional overall systematic error 25%.


Differential Cross-Sections of the Proton Compton Scattering in the Energy Between 450-MeV and 950-MeV

Toshioka, K. ; Chiba, M. ; Kato, S. ; et al.
Nucl.Phys.B 141 (1978) 364-378, 1978.
Inspire Record 120614 DOI 10.17182/hepdata.34955

The differential cross sections of the proton Compton scattering around the second resonance have been measured at a c.m. angle of 90° for incident photon energies between 450 MeV and 950 MeV in steps of 50 MeV, and at an angle of 60° for energies between 600 MeV and 800 MeV. The results show that the peak of the 2nd resonance agrees with that of the pion photoproduction process. We also calculated the proton Compton scattering based on unitarity and fixed- t dispersion relations. The calculation describes well the data of the cross section and the recoil proton polarization.

1 data table match query

No description provided.


Polarized Target Asymmetry in pi0 Photoproduction Between 0.4-GeV and 1.0-GeV Around 100-Degrees

Feller, P. ; Fukushima, M. ; Horikawa, N. ; et al.
Phys.Lett.B 55 (1975) 241-244, 1975.
Inspire Record 90929 DOI 10.17182/hepdata.35716

The polarized target asymmetry in the reaction γp→π°p has been measured at c.m. angles around 100° for photon energies between 0.4 and 1.0 GeV by detecting both the recoil proton and the π°. The result is compared with recent analyses.

1 data table match query

No description provided.


Polarized Target Asymmetry in $\pi^+$ Photoproduction Between 0.3-GeV and 1.0-GeV at 130°

Feller, P. ; Fukushima, M. ; Horikawa, N. ; et al.
Nucl.Phys.B 102 (1976) 207, 1976.
Inspire Record 90055 DOI 10.17182/hepdata.36079

The polarized target asymmetry for γ + p → π + + n was measured at c.m. angles around 130° for the energy range between 0.3 and 1.0 GeV. A magnetic spectrometer system was used to detect π + mesons from the polarized butanol target. The data show two prominent positive peaks at 0.4 and 0.8 GeV and a deep minimum at 0.6 GeV. These features are well reproduced by the phenomenological analysis made by us.

1 data table match query

No description provided.


Neutral pion photoproduction from protons at forward angles in the energy region between 350 mev and 1175 mev

Hemmi, Y. ; Inagaki, Y. ; Inagaki, T. ; et al.
Phys.Lett.B 43 (1973) 79-84, 1973.
Inspire Record 84945 DOI 10.17182/hepdata.28128

The differential cross section for the reaction γp → π 0 p at forward angles has been measured in the energy region between 350 MeV and 1175 MeV. A phenomenological multiple analysis was carried out on the present data together with other data.

1 data table match query

No description provided.


Tensor Meson Excitation in the Reaction $\gamma \gamma \to K^0_S K^0_S$

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Lackas, W. ; et al.
Z.Phys.C 37 (1988) 329, 1988.
Inspire Record 250982 DOI 10.17182/hepdata.15690

In the analysis of the reactione+e−→e+e−KS0Ks0 clear evidence for exclusive γγ→f2′ resonance production is observed. The productΓγγ ·B(f2′→K\(\bar K\)) is measured to be 0.10−0.03−0.02+0.04+0.03 keV independent of ana priori assumption on the helicity structure. Our data are consistent with a pure helicity 2 contribution and we derive an upper limit for the ratioΓγγ(0)/Γγγ. The absence of events in the mass region around 1.3 GeV clearly proves destructivef2−a2 interference and allows to measure the relative phases betweenf2,a2 andf2′. Upper limits on the production of the glueball candidate statesf2(1720) andX(2230) as well as theKS0KS0-continuum are given.

1 data table match query

Data read from graph.


Backward electroproduction of pi0 mesons on protons in the region of nucleon resonances at four momentum transfer squared Q**2 = 1.0-GeV**2.

The JLab Hall A collaboration Laveissiere, G. ; Degrande, N. ; Jaminion, S. ; et al.
Phys.Rev.C 69 (2004) 045203, 2004.
Inspire Record 625669 DOI 10.17182/hepdata.25226

Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.

12 data tables match query

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.975.

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.925.

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.875.

More…