Measurement of the $CP$ properties of Higgs boson interactions with $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 563, 2023.
Inspire Record 2613280 DOI 10.17182/hepdata.131601

A study of the charge conjugation and parity ($CP$) properties of the interaction between the Higgs boson and $\tau$-leptons is presented. The study is based on a measurement of $CP$-sensitive angular observables defined by the visible decay products of $\tau$-lepton decays, where at least one hadronic decay is required. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of $\sqrt{s}= 13$ TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $CP$-violating interactions between the Higgs boson and $\tau$-leptons are described by a single mixing angle parameter $\phi_{\tau}$ in the generalised Yukawa interaction. Without assuming the Standard Model hypothesis for the $H\rightarrow\tau\tau$ signal strength, the mixing angle $\phi_{\tau}$ is measured to be $9^{\circ} \pm 16^{\circ}$, with an expected value of $0^{\circ} \pm 28^{\circ}$ at the 68% confidence level. The pure $CP$-odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model.

5 data tables match query

Observed 1-D likelihood scan of the $CP$-mixing angle $\phi_{\tau}$.

Expected 1-D likelihood scan of the $CP$-mixing angle $\phi_{\tau}$.

Observed 2-D likelihood scan of the signal strength $\mu_{\tau\tau}$ versus the $CP$-mixing angle $\phi_{\tau}$.

More…

Measurements of $W^{+}W^{-}$ production in decay topologies inspired by searches for electroweak supersymmetry

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 718, 2023.
Inspire Record 2103950 DOI 10.17182/hepdata.132115

This paper presents a measurement of fiducial and differential cross-sections for $W^{+}W^{-}$ production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the `stransverse mass' variable $m_{\textrm{T2}}$, which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct $W^{+}W^{-}$ production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.

30 data tables match query

Signal region detector-level distribution for the observable $|y_{e\mu}|$.

Signal region detector-level distribution for the observable $|\Delta \phi(e \mu)|$.

Signal region detector-level distribution for the observable $ \cos\theta^{\ast}$.

More…

Evidence of pair production of longitudinally polarised vector bosons and study of CP properties in $ZZ \to 4\ell$ events with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 12 (2023) 107, 2023.
Inspire Record 2709671 DOI 10.17182/hepdata.143611

A study of the polarisation and CP properties in $ZZ$ production is presented. The used data set corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. The $ZZ$ candidate events are reconstructed using two same-flavour opposite-charge electron or muon pairs. The production of two longitudinally polarised $Z$ bosons is measured with a significance of 4.3 standard deviations, and its cross-section is measured in a fiducial phase space to be $2.45 \pm 0.60$ fb, consistent with the next-to-leading-order Standard Model prediction. The inclusive differential cross-section as a function of a CP-sensitive angular observable is also measured. The results are used to constrain anomalous CP-odd neutral triple gauge couplings.

1 data table match query

Unfolded differential cross-section as a function of the Optimal Observable $\mathcal{O}_{T_{yz,1} T_{yz,3}}$


Search for Resonant Production of Dark Quarks in the Dijet Final State with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 02 (2024) 128, 2024.
Inspire Record 2719976 DOI 10.17182/hepdata.145191

This paper presents a search for a new $Z^\prime$ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at $\sqrt{s}=13$ TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95 % confidence-level upper limits on the production cross-section times branching ratio of the $Z^\prime$ to dark quarks as a function of the $Z^\prime$ mass for various dark-quark scenarios.

13 data tables match query

Distribution of the di-jet invariant mass, $m_{\mathrm{JJ}}$ for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z'}=2.5$ TeV), shown after applying the preselections described in the text. The simulated background is normalised to the data and the signals are normalised to a production cross-section of 10 fb.

Distributions of the number of tracks associated to the leading jet, $n_{track,1}$, for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z^\prime}=2.5$ TeV), shown after applying the preselections described in the text. All distributions are normalised to unity. The uncertainty band around the background prediction corresponds to the modelling uncertainty described in Section 6.

Distributions of the number of tracks associated to the subleading jet, $n_{track,2}$, for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z^\prime}=2.5$ TeV), shown after applying the preselections described in the text. All distributions are normalised to unity. The uncertainty band around the background prediction corresponds to the modelling uncertainty described in Section 6.

More…

Search for a CP-odd Higgs boson decaying into a heavy CP-even Higgs boson and a $Z$ boson in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ final states using 140 fb$^{-1}$ of data collected with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 02 (2024) 197, 2024.
Inspire Record 2719822 DOI 10.17182/hepdata.144335

A search for a heavy CP-odd Higgs boson, $A$, decaying into a $Z$ boson and a heavy CP-even Higgs boson, $H$, is presented. It uses the full LHC Run 2 dataset of $pp$ collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The search for $A\to ZH$ is performed in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ final states and surpasses the reach of previous searches in different final states in the region with $m_H>350$ GeV and $m_A>800$ GeV. No significant deviation from the Standard Model expectation is found. Upper limits are placed on the production cross-section times the decay branching ratios. Limits with less model dependence are also presented as functions of the reconstructed $m(t\bar{t})$ and $m(b\bar{b})$ distributions in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ channels, respectively. In addition, the results are interpreted in the context of two-Higgs-doublet models.

69 data tables match query

<b><u>Overview of HEPData Record</u></b><br> <b>Upper limits on cross-sections:</b> <ul> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=0.5">95% CL upper limit on ggF A->ZH(tt) production for tanb=0.5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=1">95% CL upper limit on ggF A->ZH(tt) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=5">95% CL upper limit on ggF A->ZH(tt) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=1">95% CL upper limit on bbA A->ZH(tt) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=5">95% CL upper limit on bbA A->ZH(tt) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=10">95% CL upper limit on bbA A->ZH(tt) production for tanb=10</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=0.5">95% CL upper limit on ggF A->ZH(bb) production for tanb=0.5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=1">95% CL upper limit on ggF A->ZH(bb) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=5">95% CL upper limit on ggF A->ZH(bb) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=1">95% CL upper limit on bbA A->ZH(bb) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=5">95% CL upper limit on bbA A->ZH(bb) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=10">95% CL upper limit on bbA A->ZH(bb) production for tanb=10</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=20">95% CL upper limit on bbA A->ZH(bb) production for tanb=20</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=m(tt)&#44;L3hi_Zin&#44;ggF-production">m(tt) distribution in the L3hi_Zin region of the lltt channel</a> <li><a href="?table=m(bb)&#44;2tag&#44;0L&#44;ggF-production">m(bb) distribution in the 2 b-tag 0L region of the vvbb channel</a> <li><a href="?table=m(bb)&#44;3ptag&#44;0L&#44;bbA-production">m(bb) distribution in the 3p b-tag 0L region of the vvbb channel</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin450&#44;bbA-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis with the bbA signal shown</a> <li><a href="?table=m(tt)&#44;L3hi_Zin&#44;bbA-production">m(tt) distribution in the L3hi_Zin region of the lltt channel with the bbA signal shown</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin350&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=350 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin400&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=400 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin450&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin500&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=500 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin550&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=550 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin600&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=600 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin700&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=700 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin800&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin130&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin150&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin200&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin250&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin300&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin350&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin400&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin450&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin500&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin600&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin700&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin800&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin130&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin150&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin200&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin250&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin300&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin350&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin400&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin450&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin500&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin600&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin700&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin800&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;2L">Fit discriminant mT(VH) in the 2L region of the vvbb channel</a> <li><a href="?table=mTVH&#44;2tag&#44;em">Fit discriminant mT(VH) in the em region of the vvbb channel</a> <li><a href="?table=mTVH&#44;3ptag&#44;2L">Fit discriminant mT(VH) in the 2L region of the vvbb channel</a> <li><a href="?table=mTVH&#44;3ptag&#44;em">Fit discriminant mT(VH) in the em region of the vvbb channel</a> <li><a href="?table=lep3pt&#44;L3hi_Zin">pT(lepton,3) distribution in the L3hi_Zin region of the lltt channel</a> <li><a href="?table=etaHrestVH&#44;L3hi_Zin">eta(H,VH rest frame) distribution in the signal region of the lltt channel</a> <li><a href="?table=ETmiss&#44;2tag&#44;0L">ETmiss distribution in the 2 b-tag signal region of the vvbb channel</a> <li><a href="?table=mtopnear&#44;2tag&#44;0L">m(top,near) distribution in the 2 b-tag signal region of the vvbb channel</a> <li><a href="?table=ETmiss&#44;3ptag&#44;0L">ETmiss distribution in the 3p b-tag signal region of the vvbb channel</a> <li><a href="?table=mtopnear&#44;3ptag&#44;0L">m(top,near) distribution in the 3p b-tag signal region of the vvbb channel</a> </ul> <b>Observed local significance:</b> <ul> <li><a href="?table=Local%20significance,%20lltt,%20ggF%20production">ggF A->ZH->lltt signals</a> <li><a href="?table=Local%20significance,%20lltt,%20bbA%20production">bbA A->ZH->lltt signals</a> <li><a href="?table=Local%20significance,%20vvbb,%20ggF%20production">ggF A->ZH->vvbb signals</a> <li><a href="?table=Local%20significance,%20vvbb,%20bbA%20production">bbA A->ZH->vvbb signals</a> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="?table=Acceptance*efficiency,%20lltt,%20ggF%20production">ggF A->ZH->lltt signals</a> <li><a href="?table=Acceptance*efficiency,%20lltt,%20bbA%20production">bbA A->ZH->lltt signals</a> <li><a href="?table=Acceptance*efficiency,%20vvbb,%20ggF%20production">ggF A->ZH->vvbb signals</a> <li><a href="?table=Acceptance*efficiency,%20vvbb,%20bbA%20production">bbA A->ZH->vvbb signals</a> </ul>

The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>

The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>

More…

Studies of new Higgs boson interactions through nonresonant $HH$ production in the $b\bar{b}\gamma\gamma$ final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 01 (2024) 066, 2024.
Inspire Record 2712676 DOI 10.17182/hepdata.144918

A search for nonresonant Higgs boson pair production in the $b\bar{b}\gamma\gamma$ final state is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this final state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs ($H$) boson self-coupling modifier $\kappa_\lambda$ but also of the quartic $HHVV$ ($V=W,Z$) coupling modifier $\kappa_{2V}$. No significant excess above the expected background from Standard Model processes is observed. An observed upper limit $\mu_{HH}<4.0$ is set at 95% confidence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confidence intervals for the coupling modifiers are $-1.4<\kappa_\lambda<6.9$ and $-0.5<\kappa_{2V}<2.7$, assuming all other Higgs boson couplings except the one under study are fixed to the Standard Model predictions. The results are interpreted in the Standard Model effective field theory and Higgs effective field theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions.

45 data tables match query

Observed (solid line) value of $-2\ln\Lambda$ as a function of $\kappa_{\lambda}$, when all other coupling modifiers are fixed to their SM predictions.

Expected (dashed line) value of $-2\ln\Lambda$ as a function of $\kappa_{\lambda}$, when all other coupling modifiers are fixed to their SM predictions.

Observed (solid line) value of $-2\ln\Lambda$ as a function of $\kappa_{2V}$, when all other coupling modifiers are fixed to their SM predictions.

More…

Search for Higgs boson decays into a pair of pseudoscalar particles in the $bb\mu\mu$ final state with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 012006, 2022.
Inspire Record 1937344 DOI 10.17182/hepdata.107761

This paper presents a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one $a$-boson decays into a $b$-quark pair and the other into a muon pair. The search uses 139 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the LHC. A narrow dimuon resonance is searched for in the invariant mass spectrum between 16 GeV and 62 GeV. The largest excess of events above the Standard Model backgrounds is observed at a dimuon invariant mass of 52 GeV and corresponds to a local (global) significance of $3.3 \sigma$ ($1.7 \sigma$). Upper limits at 95% confidence level are placed on the branching ratio of the Higgs boson to the $bb\mu\mu$ final state, $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$, and are in the range $\text{(0.2-4.0)} \times 10^{-4}$, depending on the signal mass hypothesis.

11 data tables match query

Post-fit number of background events in all SR bins (after applying the BDT cuts) that are tested for the presence of signal. The bins are 2 GeV (3 GeV) wide in mmumu for ma ≤ 45 GeV (ma > 45 GeV). Events in neighbouring bins partially overlap. Discontinuities in the background predictions appear when the BDT discriminant used for the selection changes from the one trained in the lower mass range to the one trained in the higher mass range.

Post-fit number of background events in all SR bins without applying the BDT cuts that are tested for the presence of signal. The bins are 2 GeV (3 GeV) wide in mµµ for $m_a$ ≤ 45 GeV ($m_a$ > 45 GeV). Events in neighbouring bins partially overlap. Discontinuities in the background predictions appear when the BDT discriminant used for the selection changes from the one trained in the lower mass range to the one trained in the higher mass range.

Probability that the observed spectrum is compatible with the background-only hypothesis. The local $p_0$-values are quantified in standard deviations $\sigma$.

More…

Search for new phenomena in $pp$ collisions in final states with tau leptons, $b$-jets, and missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 104 (2021) 112005, 2021.
Inspire Record 1907601 DOI 10.17182/hepdata.105998

A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.

89 data tables match query

Relative systematic uncertainties in the estimated number of background events in the signal regions. In the lower part of the table, a breakdown of the total uncertainty into different categories is given. For the multi-bin SR, the breakdown refers to the integral over all three $p_{\text{T}}(\tau)$ bins. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.

Distributions of $m_{\text{T}2}(\tau_{1},\tau_{2})$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

Distributions of $E_{\text{T}}^{\text{miss}}$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

More…

Version 2
Search for resonant pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 092002, 2022.
Inspire Record 2032611 DOI 10.17182/hepdata.111124

A search for resonant Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is presented. The analysis uses 126-139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis is divided into two channels, targeting Higgs boson decays which are reconstructed as pairs of small-radius jets or as individual large-radius jets. Spin-0 and spin-2 benchmark signal models are considered, both of which correspond to resonant $HH$ production via gluon$-$gluon fusion. The data are consistent with Standard Model predictions. Upper limits are set on the production cross-section times branching ratio to Higgs boson pairs of a new resonance in the mass range from 251 GeV to 5 TeV.

40 data tables match query

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-0 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-0 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-2 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

More…

Search for events with a pair of displaced vertices from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 106 (2022) 032005, 2022.
Inspire Record 2040545 DOI 10.17182/hepdata.127764

A search for events with two displaced vertices from long-lived particles (LLP) pairs using data collected by the ATLAS detector at the LHC is presented. This analysis uses 139~fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded in 2015-2018. The search employs techniques for reconstructing vertices of LLPs decaying to jets in the muon spectrometer displaced between 3 m and 14 m with respect to the primary interaction vertex. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined. For the Higgs boson with a mass of 125 GeV, the paper reports the first exclusion limits for branching fractions into neutral long-lived particles below 0.1%, while branching fractions above 10% are excluded at 95% confidence level for LLP proper lifetimes ranging from 4 cm to 72.4 m. In addition, the paper present the first results for the decay of LLPs into into $t\bar{t}$ in the ATLAS muon spectrometer.

116 data tables match query

Efficiency for the Muon RoI Cluster trigger as a function of the decay position of the LLP for some scalar portal samples in the MS barrel for events passing the data quality requirements and having a reconstructed primary vertex. These efficiency distributions are based solely on MC simulation, without any corrections applied for mismodeling. The vertical lines show the relevant detector boundaries, where “HCal end” is the outer limit of the hadronic calorimeter, “RPC 1/2” represent the first/second stations of RPC chambers, “TGC 1” represents the first stations of TGC chambers and “L/S” indicate whether they are in the Large or Small sectors.

Efficiency for the Muon RoI Cluster trigger as a function of the decay position of the LLP for some scalar portal samples in the MS endcaps for events passing the data quality requirements and having a reconstructed primary vertex. These efficiency distributions are based solely on MC simulation, without any corrections applied for mismodeling. The vertical lines show the relevant detector boundaries, where “HCal end” is the outer limit of the hadronic calorimeter, “RPC 1/2” represent the first/second stations of RPC chambers, “TGC 1” represents the first stations of TGC chambers and “L/S” indicate whether they are in the Large or Small sectors.

Efficiency to reconstruct an MS DV in the MS barrel fiducial volume as a function of the transverse decay position of the LLP for scalar portal samples with $m_\varPhi=125$~\GeV\ for vertices that pass the baseline event selection and satisfy the vertex isolation criteria. The efficiency distributions are corrected for mismodeling. The vertical lines show the relevant detector boundaries, where ``HCal end'' is the outer limit of the hadronic calorimeter, ``MDT 1/2'' represent the first/second stations of MDT chambers and ``L/S'' indicate whether they are in Large or Small sectors.

More…