Measurement of the Forward-Backward Charge Asymmetry and Extraction of $sin^2\Theta^\mbox{eff}_W$ in $p\bar{p} \to Z/\gamma^{*}+X \to e^+e^- +X$ Events Produced at $\sqrt{s} = 1.96$ TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 101 (2008) 191801, 2008.
Inspire Record 783813 DOI 10.17182/hepdata.52605

We present a measurement of the forward-backward charge asymmetry ($A_{FB}$) in $p\bar{p} \to Z/\gamma^{*}+X \to e^+e^-+X$ events at a center-of-mass energy of 1.96 TeV using 1.1 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. $A_{FB}$ is measured as a function of the invariant mass of the electron-positron pair, and found to be consistent with the standard model prediction. We use the $A_{FB}$ measurement to extract the effective weak mixing angle sin$^2\Theta^{eff}_W = 0.2327 \pm 0.0018 (stat.) \pm 0.0006 (syst.)$.

1 data table match query

Unfolded forward-backward asymmetry as a function of the di-electron mass.


Measurement of $b$-quark fragmentation properties in jets using the decay $B^{\pm} \to J/\psi K^{\pm}$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 12 (2021) 131, 2021.
Inspire Record 1913061 DOI 10.17182/hepdata.94220

The fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The $B$ mesons are reconstructed using the decay of $B^{\pm}$ into $J/\psi K^{\pm}$, with the $J/\psi$ decaying into a pair of muons. Jets are reconstructed using the anti-$k_t$ algorithm with radius parameter $R=0.4$. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed $B$ hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.

8 data tables match query

Longitudinal profile for 50 GeV < pT < 70 GeV.

Transverse profile for 50 GeV < pT < 70 GeV.

Longitudinal profile for 70 GeV < pT < 100 GeV.

More…

Search for heavy resonances decaying into a pair of $Z$ bosons in the $\ell^+\ell^-\ell'^+\ell'^-$ and $\ell^+\ell^-\nu\bar\nu$ final states using 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
Eur.Phys.J.C 81 (2021) 332, 2021.
Inspire Record 1820316 DOI 10.17182/hepdata.97159

A search for heavy resonances decaying into a pair of $Z$ bosons leading to $\ell^+\ell^-\ell'^+\ell'^-$ and $\ell^+\ell^-\nu\bar\nu$ final states, where $\ell$ stands for either an electron or a muon, is presented. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV collected from 2015 to 2018 that corresponds to the full integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Different mass ranges spanning 200 GeV to 2000 GeV for the hypothetical resonances are considered, depending on the final state and model. In the absence of a significant observed excess, the results are interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance. The upper limits for the spin-0 resonance are translated to exclusion contours in the context of Type-I and Type-II two-Higgs-doublet models, and the limits for the spin-2 resonance are used to constrain the Randall--Sundrum model with an extra dimension giving rise to spin-2 graviton excitations.

16 data tables match query

Distribution of the four-lepton invariant mass in the four-lepton final state for the ggF-MVA-high 4-muon category.

Distribution of the four-lepton invariant mass in the four-lepton final state for the ggF-MVA-high 2e2mu category.

Distribution of the four-lepton invariant mass in the four-lepton final state for the ggF-MVA-high 4-electron category.

More…

Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 105, 2022.
Inspire Record 1915357 DOI 10.17182/hepdata.107760

This paper presents a measurement of the electroweak production of two jets in association with a $Z\gamma$ pair, with the $Z$ boson decaying into two neutrinos. It also presents a search for invisible or partially invisible decays of a Higgs boson with a mass of 125 GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton-proton collisions at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector and corresponding to an integrated luminosity of 139 fb$^{-1}$. The event signature, shared by all benchmark processes considered for the measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. Electroweak $Z\gamma$ production in association with two jets is observed in this final state with a significance of 5.2 (5.1 expected) standard deviations. The measured fiducial cross-section for this process is 1.31$\pm$0.29 fb. An observed (expected) upper limit of 0.37 ($0.34^{+0.15}_{-0.10}$) at 95% confidence level is set on the branching ratio of a 125 GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson into a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 ($0.017^{+0.007}_{-0.005}$), assuming the Standard Model production cross-section for a 125 GeV Higgs boson.

16 data tables match query

Post-fit results for all $m_\text{jj}$ SR and CR bins in the EW $Z \gamma + \text{jets}$ cross-section measurement with the $\mu_{Z \gamma_\text{EW}}$ signal normalization floating. The post-fit uncertainties include statistical, experimental, and theory contributions.

Post-fit results for all DNN SR and CR bins in the search for $H \to \text{inv.}$ with the $\mathcal{B}_\text{inv}$ signal normalization set to zero. For the $Z_\text{Rev.Cen.}^\gamma$ CR, the third bin contains all events with DNN output score values of 0.6-1.0. The $H \to \text{inv.}$ signal is scaled to a $\mathcal{B}_\text{inv}$ of 37%. The post-fit uncertainties include statistical, experimental, and theoretical contributions.

Post-fit results for the ten [$m_\text{jj}$, $m_\text{T}$] bins constituting the SR and CRs defined for the dark photon search with the $\mathcal{B}(H \to \gamma \gamma_\text{d})$ signal normalization set to zero. A $H \to \gamma \gamma_\text{d}$ signal is shown for two different mass hypotheses (125 GeV, 500 GeV) and scaled to a branching ratio of 2% and 1%, respectively. The post-fit uncertainties include statistical, experimental, and theoretical contributions.

More…

Search for Higgs boson decays into a pair of pseudoscalar particles in the $bb\mu\mu$ final state with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 012006, 2022.
Inspire Record 1937344 DOI 10.17182/hepdata.107761

This paper presents a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one $a$-boson decays into a $b$-quark pair and the other into a muon pair. The search uses 139 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the LHC. A narrow dimuon resonance is searched for in the invariant mass spectrum between 16 GeV and 62 GeV. The largest excess of events above the Standard Model backgrounds is observed at a dimuon invariant mass of 52 GeV and corresponds to a local (global) significance of $3.3 \sigma$ ($1.7 \sigma$). Upper limits at 95% confidence level are placed on the branching ratio of the Higgs boson to the $bb\mu\mu$ final state, $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$, and are in the range $\text{(0.2-4.0)} \times 10^{-4}$, depending on the signal mass hypothesis.

11 data tables match query

Post-fit number of background events in all SR bins (after applying the BDT cuts) that are tested for the presence of signal. The bins are 2 GeV (3 GeV) wide in mmumu for ma ≤ 45 GeV (ma > 45 GeV). Events in neighbouring bins partially overlap. Discontinuities in the background predictions appear when the BDT discriminant used for the selection changes from the one trained in the lower mass range to the one trained in the higher mass range.

Post-fit number of background events in all SR bins without applying the BDT cuts that are tested for the presence of signal. The bins are 2 GeV (3 GeV) wide in mµµ for $m_a$ ≤ 45 GeV ($m_a$ > 45 GeV). Events in neighbouring bins partially overlap. Discontinuities in the background predictions appear when the BDT discriminant used for the selection changes from the one trained in the lower mass range to the one trained in the higher mass range.

Probability that the observed spectrum is compatible with the background-only hypothesis. The local $p_0$-values are quantified in standard deviations $\sigma$.

More…

Measurements of multijet event isotropies using optimal transport with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 10 (2023) 060, 2023.
Inspire Record 2663035 DOI 10.17182/hepdata.110164

A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.

75 data tables match query

IRing2 for HT2>=500 GeV, NJets>=2

IRing2 for HT2>=500 GeV, NJets>=3

IRing2 for HT2>=500 GeV, NJets>=4

More…

Measurement of the production cross section of pairs of isolated photons in $pp$ collisions at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 169, 2021.
Inspire Record 1887997 DOI 10.17182/hepdata.104925

A measurement of prompt photon-pair production in proton-proton collisions at $\sqrt{s}=13$ TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb$^{-1}$. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of $p_\mathrm{T,\gamma_{1(2)}} > 40(30)$ GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system.

9 data tables match query

Differential cross section as a function of $p_{T,\gamma_{1}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.

Differential cross section as a function of $p_{T,\gamma_{2}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.

Integrated fiducial cross section measured in data and from different predictions.

More…

Measurement of the $t\bar{t}t\bar{t}$ production cross section in $pp$ collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 118, 2021.
Inspire Record 1869695 DOI 10.17182/hepdata.105039

A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb$^{-1}$ is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain $b$-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26$^{+17}_{-15}$ fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24$^{+7}_{-6}$ fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0$\pm$2.4 fb.

76 data tables match query

The results of the fitted signal strength $\mu$ in the 1L/2LOS channel

The results of fitted inclusive ${t\bar{t}t\bar{t}}$ cross-section in the 1L/2LOS channel

Ranking of the nuisance parameters included in the fit according to their impact on the signal strength $\mu$. The impact of each nuisance parameter, $\Delta\mu$, is computed by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the nuisance parameter to its best-fit value, $\hat{\theta}$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta\theta$ ($\pm \Delta\hat{\theta}$).

More…

Version 2
Search for resonances decaying into photon pairs in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
Phys.Lett.B 822 (2021) 136651, 2021.
Inspire Record 1849059 DOI 10.17182/hepdata.100161

Searches for new resonances in the diphoton final state, with spin 0 as predicted by theories with an extended Higgs sector and with spin 2 using a warped extra-dimension benchmark model, are presented using 139 fb$^{-1}$ of $\sqrt{s} = $ 13 TeV $pp$ collision data collected by the ATLAS experiment at the LHC. No significant deviation from the Standard Model is observed and upper limits are placed on the production cross-section times branching ratio to two photons as a function of the resonance mass.

32 data tables match query

The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width (Γ_X = 4 MeV) spin-0 resonance as a function of its mass m_X. For masses greater than 1000 GeV, pseudo-experiments are used to verify the expected and observed limits, and used in place of the asymptotic limit when differences are observed.

The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width (Γ_X = 4 MeV) spin-0 resonance as a function of its mass m_X. For masses greater than 1000 GeV, pseudo-experiments are used to verify the expected and observed limits, and used in place of the asymptotic limit when differences are observed.

The expected and observed upper limits at 95\% CL on the production cross-section times branching ratio to two photons of the lightest KK graviton as a function of its mass for k/Mpl=0.10. For masses greater than 1000 GeV, pseudo-experiments are used to verify the expected and observed limits, and used in place of the asymptotic limit when differences are observed.

More…

Version 2
Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a $\tau$-lepton in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2021) 179, 2021.
Inspire Record 1843001 DOI 10.17182/hepdata.100174

A search for pair production of third-generation scalar leptoquarks decaying into a top quark and a $\tau$-lepton is presented. The search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. Events are selected if they have one light lepton (electron or muon) and at least one hadronically decaying $\tau$-lepton, or at least two light leptons. In addition, two or more jets, at least one of which must be identified as containing $b$-hadrons, are required. Six final states, defined by the multiplicity and flavour of lepton candidates, are considered in the analysis. Each of them is split into multiple event categories to simultaneously search for the signal and constrain several leading backgrounds. The signal-rich event categories require at least one hadronically decaying $\tau$-lepton candidate and exploit the presence of energetic final-state objects, which is characteristic of signal events. No significant excess above the Standard Model expectation is observed in any of the considered event categories, and 95% CL upper limits are set on the production cross section as a function of the leptoquark mass, for different assumptions about the branching fractions into $t\tau$ and $b\nu$. Scalar leptoquarks decaying exclusively into $t\tau$ are excluded up to masses of 1.43 TeV while, for a branching fraction of 50% into $t\tau$, the lower mass limit is 1.22 TeV.

14 data tables match query

Selection efficiency times acceptance summed over the seven signal regions as a function of $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$, assuming B = 1.

Selection efficiency times acceptance summed over the seven signal regions as a function of $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$, assuming B = 1.

Summary of the observed and expected 95% CL upper limits on the cross section for $\mathrm{LQ}_{3}^{\mathrm{d}}$ pair production as a function of $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$ under the assumptions of B=1.

More…

Search for type-III seesaw heavy leptons in leptonic final states in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 988, 2022.
Inspire Record 2027687 DOI 10.17182/hepdata.114228

A search for the pair production of heavy leptons as predicted by the type-III seesaw mechanism is presented. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV, corresponding to 139 fb$^{-1}$ of integrated luminosity recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis focuses on final states with three or four electrons or muons from the possible decays of new heavy leptons via intermediate electroweak bosons. No significant deviations above the Standard Model expectation are observed; upper and lower limits on the heavy lepton production cross-section and masses are derived respectively. These results are then combined for the first time with the ones already published by ATLAS using the channel with two leptons in the final state. The observed lower limit on the mass of the type-III seesaw heavy leptons combining two, three and four lepton channels together is 910 GeV at the 95% confidence level.

25 data tables match query

Expected background yields and observed data after the background-only fit in the SRs.

Distribution of $m_{\mathrm{T},3l}$ in the ZL SR after the background-only fit. The uncertainty on the expected number of background events includes all statistical and systematic post-fit uncertainties with the correlations between various background sources taken into account.

Distribution of $m_{\mathrm{T},3l}$ in the ZL Veto SR after the background-only fit. The uncertainty on the expected number of background events includes all statistical and systematic post-fit uncertainties with the correlations between various background sources taken into account.

More…

Search for new phenomena in $pp$ collisions in final states with tau leptons, $b$-jets, and missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 104 (2021) 112005, 2021.
Inspire Record 1907601 DOI 10.17182/hepdata.105998

A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.

89 data tables match query

Relative systematic uncertainties in the estimated number of background events in the signal regions. In the lower part of the table, a breakdown of the total uncertainty into different categories is given. For the multi-bin SR, the breakdown refers to the integral over all three $p_{\text{T}}(\tau)$ bins. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.

Distributions of $m_{\text{T}2}(\tau_{1},\tau_{2})$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

Distributions of $E_{\text{T}}^{\text{miss}}$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

More…

Search for exotic decays of the Higgs boson into $b\bar{b}$ and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 01 (2022) 063, 2022.
Inspire Record 1917172 DOI 10.17182/hepdata.104855

A search for the exotic decay of the Higgs boson ($H$) into a $b\bar{b}$ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The search targets events from $ZH$ production in an NMSSM scenario where $H \rightarrow \tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{1}$, with $\tilde{\chi}^{0}_{2} \rightarrow {a} \tilde{\chi}^{0}_{1}$, where $a$ is a light pseudoscalar Higgs boson and $\tilde{\chi}^{0}_{1,2}$ are the two lightest neutralinos. The decay of the $a$ boson into a pair of $b$-quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a $b$-quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $\tilde{\chi}^{0}_{2}$, $\tilde{\chi}^{0}_{1}$ and $a$ boson.

20 data tables match query

Distribution of the dijet invariant mass in CRZ. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).

Distribution of the missing transverse energy in VRMET. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).

Distribution of the dijet invariant mass in CRTop. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).

More…

Search for dark matter produced in association with a Standard Model Higgs boson decaying into $b$-quarks using the full Run 2 dataset from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 209, 2021.
Inspire Record 1913723 DOI 10.17182/hepdata.104702

The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb$^{-1}$. The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson $Z'$ or a pseudoscalar singlet $a$ and which both provide a dark matter candidate $\chi$. In the case of the two-Higgs-doublet model with an additional vector boson $Z'$, the observed limits extend up to a $Z'$ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar $a$ is excluded for masses of the $a$ up to 520 GeV and 240 GeV for $\tan \beta = 1$ and $\tan \beta = 10$ respectively. Limits on the visible cross-sections are set and range from 0.05 fb to 3.26 fb, depending on the missing transverse momentum and $b$-quark jet multiplicity requirements.

73 data tables match query

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=LimitContour_ZP2HDM_obs">Observed 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp">Expected 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp_1s">Expected +- 1sigma 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp_2s">Expected +- 2sigma 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_obs">Observed 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp">Expected 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_obs">Observed 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp">Expected 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_obs">Observed 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp">Expected 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> </ul> <b>Upper limits on cross-sections:</b> <ul> <li><a href="?table=Limits_ZP2HDM">95% CL upper limit on the cross-section for the Z'-2HDM model</a> <li><a href="?table=Limits_2HDMa_tb1_sp0p35">95% CL upper limit on the ggF cross-section in the 2HDM+a model</a> <li><a href="?table=Limits_2HDMa_tb10_sp0p35">95% CL upper limit on the bbA cross-section in the 2HDM+a model</a> <li><a href="?table=MIL">95% CL upper limit on the visible cross-section</a> </ul> <b>Theoretical cross-sections:</b> <ul> <li><a href="?table=CrossSections_ZP2HDM">Cross-section for the Z'-2HDM model</a> <li><a href="?table=CrossSections_2HDMa_tb1_sp0p35">Cross-section for ggF production in the 2HDM+a model</a> <li><a href="?table=CrossSections_2HDMa_tb10_sp0p35">Cross-section for bbA production in the 2HDM+a model</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR_post_plot_2b_150_200">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=SR_post_plot_2b_200_350">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=SR_post_plot_2b_350_500">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=SR_post_plot_2b_500_750">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 500-750 GeV</a> <li><a href="?table=SR_post_plot_2b_750">Higgs candidate invariant mass in the region with 2 b-jets and missing energy higher than 750 GeV</a> <li><a href="?table=SR_post_plot_3b_150_200">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=SR_post_plot_3b_200_350">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=SR_post_plot_3b_350_500">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=SR_post_plot_3b_500">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy higher than 500 GeV</a> <li><a href="?table=MET_post_plot_0L2b">Missing energy in events with 0 leptons and 2 b-jets</a> <li><a href="?table=MET_post_plot_0L3b">Missing energy in events with 0 leptons and at least 3 b-jets</a> <li><a href="?table=CR_post_plot_CR1">Yields in the different missing energy bins and muon-charge of the 1-lepton control region</a> <li><a href="?table=CR_post_plot_CR2">Yields in the different METlepInv bins of the 2-lepton control region</a> </ul> <b>Cut flows:</b> The tables contain three columns, corresponding to the Z'-2HDM and 2HDM+a model assuming 100% ggF or bbA production respectively. <ul> <li><a href="?table=Resolved_150_200_2b">Signal region with 2 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=Resolved_200_350_2b">Signal region with 2 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=Resolved_350_500_2b">Signal region with 2 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=Merged_500_750_2w0b">Signal region with 2 b-jets and missing energy between 500-750 GeV</a> <li><a href="?table=Merged_750_2w0b">Signal region with 2 b-jets and missing energy higher than 750 GeV</a> <li><a href="?table=Resolved_150_200_3pb">Signal region with at least 3 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=Resolved_200_350_3pb">Signal region with at least 3 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=Resolved_350_500_3pb">Signal region with at least 3 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=Merged_2w1pb">Signal region with at least 3 b-jets and missing energy higher than 500 GeV</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_150_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_200_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_350_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_500_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_750ptv_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_150_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_200_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_350_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_500ptv_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET higher than GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_150_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_200_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_350_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_500_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_750ptv_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_150_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_200_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_350_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_500ptv_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET higher than 500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_150_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_200_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_350_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_500_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_750ptv_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_150_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_200_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_350_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_500ptv_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET higher than 500 GeV</a> </ul>

Observed 95% CL exclusion limit for the Zprime-2HDM model.

Expected 95% CL exclusion limit for the Zprime-2HDM model.

More…

Version 2
Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 81 (2021) 737, 2021.
Inspire Record 1853014 DOI 10.17182/hepdata.100351

Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.

152 data tables match query

The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.

The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.

List of relative uncertainties of the measured inclusive $t\bar{t}\text{Z}$ cross section from the combined fit. The uncertainties are symmetrised for presentation and grouped into the categories described in the text. The quadratic sum of the individual uncertainties is not equal to the total uncertainty due to correlations introduced by the fit.

More…

Search for supersymmetry in events with four or more charged leptons in $139\,\textrm{fb}^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 07 (2021) 167, 2021.
Inspire Record 1852821 DOI 10.17182/hepdata.103062

A search for supersymmetry in events with four or more charged leptons (electrons, muons and $\tau$-leptons) is presented. The analysis uses a data sample corresponding to $139\,\mbox{fb\(^{-1}\)}$ of proton-proton collisions delivered by the Large Hadron Collider at $\sqrt{s}=13$ TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying $\tau$-leptons are designed to target several supersymmetric models, while a general five-lepton signal region targets any new physics phenomena leading to a final state with five charged leptons. Data yields are consistent with Standard Model expectations and results are used to set upper limits on contributions from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of general gauge-mediated supersymmetry, excluding higgsino masses up to $540$ GeV. In $R$-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of $1.6$ TeV, $1.2$ TeV, and $2.5$ TeV are placed on wino, slepton and gluino masses, respectively.

111 data tables match query

The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$^{\mathrm{loose}}$ and SR0-ZZ$^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.

The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.

The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.

More…

Search for R-parity violating supersymmetry in a final state containing leptons and many jets with the ATLAS experiment using $\sqrt{s} = 13$ TeV proton-proton collision data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 81 (2021) 1023, 2021.
Inspire Record 1869040 DOI 10.17182/hepdata.104860

A search for R-parity violating supersymmetry in final states characterised by high jet multiplicity, at least one isolated light lepton and either zero or at least three $b$-tagged jets is presented. The search uses 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature gluino production, top-squark production, or electroweakino production. The dominant sources of background are estimated using a data-driven model, based on observables at medium jet multiplicity, to predict the $b$-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. Machine learning techniques are used to reach sensitivity to electroweakino production, extending the data-driven background estimation to the shape of the machine learning discriminant. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence-level are extracted, reaching as high as 2.4 TeV in gluino mass, 1.35 TeV in top-squark mass, and 320 (365) GeV in higgsino (wino) mass.

97 data tables match query

The observed data event yields and the corresponding estimates for the backgrounds in the different $b$-jet multiplicity bins for the 20 GeV jet $p_{\mathrm{T}}$ threshold regions defined for the EWK analysis in the $1\ell$ category for 4 jets. The background is estimated by including all bins in the fit. All uncertainties, which may be correlated across the bins, are included in the total background uncertainty.

The observed data event yields and the corresponding estimates for the backgrounds in the different $b$-jet multiplicity bins for the 20 GeV jet $p_{\mathrm{T}}$ threshold regions defined for the EWK analysis in the $1\ell$ category for 5 jets. The background is estimated by including all bins in the fit. All uncertainties, which may be correlated across the bins, are included in the total background uncertainty.

The observed data event yields and the corresponding estimates for the backgrounds in the different $b$-jet multiplicity bins for the 20 GeV jet $p_{\mathrm{T}}$ threshold regions defined for the EWK analysis in the $1\ell$ category for 6 jets. The background is estimated by including all bins in the fit. All uncertainties, which may be correlated across the bins, are included in the total background uncertainty.

More…

Search for lepton-flavor-violation in $Z$-boson decays with $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.Lett. 127 (2022) 271801, 2022.
Inspire Record 1865746 DOI 10.17182/hepdata.105516

A search for lepton-flavor-violating $Z\to e\tau$ and $Z\to\mu\tau$ decays with $pp$ collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb$^{-1}$ of Run 2 $pp$ collisions at $\sqrt{s}=13$ TeV and is combined with the results of a similar ATLAS search in the final state in which the $\tau$-lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying $\tau$-leptons significantly improves the sensitivity reach for $Z\to\ell\tau$ decays. The $Z\to\ell\tau$ branching fractions are constrained in this analysis to $\mathcal{B}(Z\to e\tau)<7.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<7.2\times10^{-6}$ at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: $\mathcal{B}(Z\to e\tau)<5.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<6.5\times10^{-6}$ at 95% confidence level.

16 data tables match query

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $\mu\tau_e$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the high-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

More…

Version 2
Search for resonant pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 092002, 2022.
Inspire Record 2032611 DOI 10.17182/hepdata.111124

A search for resonant Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is presented. The analysis uses 126-139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis is divided into two channels, targeting Higgs boson decays which are reconstructed as pairs of small-radius jets or as individual large-radius jets. Spin-0 and spin-2 benchmark signal models are considered, both of which correspond to resonant $HH$ production via gluon$-$gluon fusion. The data are consistent with Standard Model predictions. Upper limits are set on the production cross-section times branching ratio to Higgs boson pairs of a new resonance in the mass range from 251 GeV to 5 TeV.

40 data tables match query

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-0 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-0 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-2 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

More…

A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 200, 2023.
Inspire Record 2176695 DOI 10.17182/hepdata.129285

A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.

16 data tables match query

Comparison between data and SM predictions for the meff distributions in the boosted SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The entries in overflow are included in the last bin. The size of the combined statistical and systematic uncertainty for the sum of the fitted background is indicated by the hatched band. The ratio of the data to the sum of the fitted background is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.

Comparison between data and SM predictions for the meff distributions in the resolved SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The entries in overflow are included in the last bin. The size of the combined statistical and systematic uncertainty for the sum of the fitted background is indicated by the hatched band. The ratio of the data to the sum of the fitted background is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.

Expected 95% CL upper limits on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 300 GeV.

More…

Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV $pp$ collision data with two top quarks and missing transverse momentum in the final state

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 503, 2023.
Inspire Record 2180393 DOI 10.17182/hepdata.129623

This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.

40 data tables match query

Post-fit signal region yields for the tt0L-high and the tt0L-low analyses. The bottom panel shows the statistical significance of the difference between the SM prediction and the observed data in each region. '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the signal region for the tt1L analysis: each bin of such distribution corresponds to a single SR included in the fit. 'Other' includes contributions from $t\bar{t}W$, $tZ$, $tWZ$ and $t\bar{t}$ (semileptonic) processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the same flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

More…

Measurement of the properties of Higgs boson production at $\sqrt{s} = 13$ TeV in the $H\to\gamma\gamma$ channel using $139$ fb$^{-1}$ of $pp$ collision data with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 088, 2023.
Inspire Record 2104770 DOI 10.17182/hepdata.129799

Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be $1.04^{+0.10}_{-0.09}$. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with a $W$ or $Z$ boson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with a $p$-value of $93\%$. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.

13 data tables match query

Cross-sections times H->yy branching ratio for ggF +bbH, VBF, VH, ttH, and tH production, normalized to their SM predictions. The values are obtained from a simultaneous fit to all categories. The theory uncertainties in the predictions include uncertainties due to missing higher-order terms in the perturbative QCD calculations and choices of parton distribution functions and value of alpha_s, as well as the H->yy branching ratio uncertainty.

Correlation matrix for the measurement of production cross-sections of the Higgs boson times the H->yy branching ratio.

Best-fit values and uncertainties for STXS parameters in each of the 28 regions considered, normalized to their SM predictions. The values for the gg->H process also include the contributions from bbH production.

More…

Constraints on Higgs boson properties using $WW^{*}(\rightarrow e\nu\mu\nu) jj$ production in 36.1 fb$^{-1}$ of $\sqrt{s}$=13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 622, 2022.
Inspire Record 1932467 DOI 10.17182/hepdata.130779

This article presents the results of two studies of Higgs boson properties using the $WW^*(\rightarrow e\nu\mu\nu)jj$ final state, based on a dataset corresponding to 36.1/fb of $\sqrt{s}$=13 TeV proton$-$proton collisions recorded by the ATLAS experiment at the Large Hadron Collider. The first study targets Higgs boson production via gluon$-$gluon fusion and constrains the CP properties of the effective Higgs$-$gluon interaction. Using angular distributions and the overall rate, a value of $\tan(\alpha) = 0.0 \pm 0.4$ stat. $ \pm 0.3$ syst is obtained for the tangent of the mixing angle for CP-even and CP-odd contributions. The second study exploits the vector-boson fusion production mechanism to probe the Higgs boson couplings to longitudinally and transversely polarised $W$ and $Z$ bosons in both the production and the decay of the Higgs boson; these couplings have not been directly constrained previously. The polarisation-dependent coupling-strength scale factors are defined as the ratios of the measured polarisation-dependent coupling strengths to those predicted by the Standard Model, and are determined using rate and kinematic information to be $a_L=0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $a_{T}=1.2 \pm 0.4 $(stat.)$ ^{+0.2}_{-0.3} $(syst.). These coupling strengths are translated into pseudo-observables, resulting in $\kappa_{VV}= 0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $\epsilon_{VV} =0.13^{+0.28}_{-0.20}$ (stat.)$^{+0.08}_{-0.10}$(syst.). All results are consistent with the Standard Model predictions.

21 data tables match query

Post-fit NFs and their uncertainties for the Z+jets, top and WW backgrounds. Both sets of normalisation factors differ slightly depending on which (B)SM model is tested, but are consistent within their total uncertainties.

Post-fit event yields in the signal and control regions obtained from the study of the signal strength parameter $\mu^{\text{ggF+2jets}}$. The quoted uncertainties include the theoretical and experimental systematic sources and those due to sample statistics. The fit constrains the total expected yield to the observed yield. The diboson background is split into $W W$ and non-$W W$ contributions.

Breakdown of the main contributions to the total uncertainty on $\tan \alpha$ based on the fit that exploits both shape and rate information. Individual sources of systematic uncertainty are grouped into either the theoretical or the experimental uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the components.

More…

Search for resonant and non-resonant Higgs boson pair production in the $b\bar b\tau^+\tau^-$ decay channel using 13 TeV $pp$ collision data from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 040, 2023.
Inspire Record 2155171 DOI 10.17182/hepdata.130794

A search for Higgs boson pair production in events with two $b$-jets and two $\tau$-leptons is presented, using a proton-proton collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of $3.1\sigma$ ($2.0\sigma$). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance.

51 data tables match query

Breakdown of the relative contributions to the uncertainty in the extracted signal cross-sections, as determined in the likelihood fit (described in Section 8) to data. These are obtained by fixing the relevant nuisance parameters in the likelihood fit, and subtracting the obtained uncertainty on the fitted signal cross-sections in quadrature from the total uncertainty, and then dividing the result by the total uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between uncertainties in the different groups.

Post-fit expected number of signal and background events and observed number of data events in the last two bins of the non-resonant BDT score distribution of the SM signal after applying the selection criteria and requiring exactly 2 b-tagged jets and assuming a background-only hypothesis

Observed and expected upper limits at 95% CL on the cross-section of non-resonant HH production according to SM-like kinematics, and on the cross-section of non-resonant HH production divided by the SM prediction. The 1 sigma and 2 sigma variations around the expected limit are also shown.

More…

A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Nature 607 (2022) 52-59, 2022.
Inspire Record 2104706 DOI 10.17182/hepdata.130266

The Standard Model of particle physics describes the known fundamental particles and forces that make up our universe, with the exception of gravity. One of the central features of the Standard Model is a field that permeates all of space and interacts with fundamental particles. The quantum excitation of this field, known as Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the Standard Model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, allowing much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and $W$ and $Z$ bosons -- the carriers of the strong, electromagnetic, and weak forces -- are studied in detail. Interactions with three third-generation matter particles (bottom ($b$) and top ($t$) quarks, and tau leptons ($\tau$)) are well measured and indications of interactions with a second-generation particle (muons, $\mu$) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the Standard Model.

57 data tables match query

Observed and predicted cross sections for different Higgs boson production processes, measured assuming SM values for the decay branching fractions. The lower panels show the ratios of the measured values to their SM predictions. The $p$-value for compatibility of the measurement and the SM prediction is 65%.

Observed and predicted branching fractions for different Higgs boson decay modes measured assuming SM values for the production cross sections. The lower panels show the ratios of the measured values to their SM predictions. The $p$-value for compatibility of the measurement and the SM prediction is 56%.

Ratio of observed rate to predicted SM event rate for different combinations of Higgs boson production and decay processes. The narrow grey bands indicate the theory uncertainties in the SM cross-section times the branching fraction predictions. The $p$-value for compatibility of the measurement and the SM prediction is 72%.

More…