Measurement of the $ Z\gamma \to \nu \overline{\nu}\gamma $ production cross section in pp collisions at $ \sqrt{s}=13 $ TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2018) 010, 2018.
Inspire Record 1698006 DOI 10.17182/hepdata.83965

The production of $Z$ bosons in association with a high-energy photon ($Z\gamma$ production) is studied in the neutrino decay channel of the $Z$ boson using $pp$ collisions at $\sqrt{s}$ = 13 TeV. The analysis uses a data sample with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at the LHC in 2015 and 2016. Candidate $Z\gamma$ events with invisible decays of the $Z$ boson are selected by requiring significant transverse momentum ($p_{T}$) of the dineutrino system in conjunction with a single isolated photon with large transverse energy ($E_{T}$). The rate of $Z\gamma$ production is measured as a function of photon $E_{T}$, dineutrino system $p_{T}$ and jet multiplicity. Evidence of anomalous triple gauge-boson couplings is sought in $Z\gamma$ production with photon $E_{T}$ greater than 600 GeV. No excess is observed relative to the Standard Model expectation, and upper limits are set on the strength of $ZZ\gamma$ and $Z\gamma\gamma$ couplings.

8 data tables match query

Measured integrated cross sections for the $Z\gamma$ process for neutrino final states at $\sqrt{s} = 13$ TeV in the extended fiducial region defined in the paper.

Measured differential cross sections for the $pp \rightarrow \nu\bar{\nu}\gamma$ process at $\sqrt{s} = 13$ TeV as a function of photon $E_{T}$ in the inclusive $N_{jets} \geq 0$ extended fiducial region defined in the paper.

Measured differential cross sections for the $pp \rightarrow \nu\bar{\nu}\gamma$ process at $\sqrt{s} = 13$ TeV as a function of photon $E_{T}$ in the exclusive $N_{jets} = 0$ extended fiducial region defined in the paper.

More…

Search for heavy long-lived multi-charged particles in proton-proton collisions at $\sqrt{s}$ = 13 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052003, 2019.
Inspire Record 1707957 DOI 10.17182/hepdata.85615

A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data with an integrated luminosity of 36.1 fb$^{-1}$ collected in 2015 and 2016 from proton-proton collisions at $\sqrt{s}$ = 13 TeV are examined. Particles producing anomalously high ionization, consistent with long-lived massive particles with electric charges from |q|=2e to |q|=7e, are searched for. No events are observed, and 95% confidence level cross-section upper limits are interpreted as lower mass limits for a Drell-Yan production model. Multi-charged particles with masses between 50 GeV and 980-1220 GeV (depending on their electric charge) are excluded.

3 data tables match query

The signal efficiency values versus mass values for different charges.

Expected cross-section upper limits on the production cross-section of MCPs as a function of simulated particle mass for different charges.

Observed cross-section upper limits on the production cross-section of MCPs as a function of simulated particle mass for different charges.


Properties of $g\rightarrow b\bar{b}$ at small opening angles in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052004, 2019.
Inspire Record 1711114 DOI 10.17182/hepdata.85697

The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to $b$-quark pairs is a unique probe into the properties of gluon fragmentation because identified $b$-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the $g\rightarrow b\bar{b}$ process are measured using 33 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-$k_t$ jet algorithm with radius parameter $R = 0.2$, are used to probe angular scales below the $R=0.4$ jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into $b$-quarks.

4 data tables match query

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta R(b,b)$, as a function of $\Delta R(b,b)$ - the angle in $\eta$ and $\phi$ between the two b-tagged jets.

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta\theta_\text{gpp,gbb}/\pi$, the angle between production (gpp) and decay (gbb) planes ($\Delta\theta_\text{gpp,gbb}$).

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/dz(p_\text{T})$, as a function of $z(p_\text{T})=p_\text{T,2}/(p_\text{T,1}+p_\text{T,2})$.

More…

Measurement of prompt photon production in $\sqrt{s_\mathrm{NN}} = 8.16$ TeV $p$+Pb collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 796 (2019) 230-252, 2019.
Inspire Record 1723858 DOI 10.17182/hepdata.87256

The inclusive production rates of isolated, prompt photons in $p$+Pb collisions at $\sqrt{s_\mathrm{NN}} = 8.16$ TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb$^{-1}$ recorded in 2016. The cross-section and nuclear modification factor $R_{p\mathrm{Pb}}$ are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and $R_{p\mathrm{Pb}}$ values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.

7 data tables match query

The measured cross sections for prompt, isolated photons with rapidity in (1.09,1.90).

The measured cross sections for prompt, isolated photons with rapidity in (−1.84,0.91).

The measured cross sections for prompt, isolated photons with rapidity in (−2.83,−2.02).

More…

Search for chargino and neutralino production in final states with a Higgs boson and missing transverse momentum at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 100 (2019) 012006, 2019.
Inspire Record 1711261 DOI 10.17182/hepdata.85726

A search is conducted for the electroweak pair production of a chargino and a neutralino $pp \rightarrow \tilde\chi^\pm_1 \tilde\chi^0_2$, where the chargino decays into the lightest neutralino and a $W$ boson, $\tilde\chi^\pm_1 \rightarrow \tilde\chi^0_1 W^{\pm}$, while the neutralino decays into the lightest neutralino and a Standard Model-like 125 GeV Higgs boson, $\tilde\chi^0_2 \rightarrow \tilde\chi^0_1 h$. Fully hadronic, semileptonic, diphoton, and multilepton (electrons, muons) final states with missing transverse momentum are considered in this search. Higgs bosons in the final state are identified by either two jets originating from bottom quarks ($h \rightarrow b\bar{b}$), two photons ($h \rightarrow \gamma\gamma$), or leptons from the decay modes $h \rightarrow WW$, $h \rightarrow ZZ$ or $h \rightarrow \tau \tau$. The analysis is based on 36.1 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. Observations are consistent with the Standard Model expectations, and 95% confidence-level limits of up to 680 GeV in $\tilde\chi^\pm_1/\tilde\chi^0_2$ mass are set in the context of a simplified supersymmetric model.

74 data tables match query

Data and SM predictions in SRs for the $0lb\bar{b}$ analysis for $E_{\mathrm{T}}^{\mathrm{miss}}$ in SRHad-High. All SRs selections but the one on the quantity shown are applied. All uncertainties are included in the uncertainty band. Two example SUSY models are superimposed for illustrative purposes.

Data and SM predictions in SRs for the $0lb\bar{b}$ analysis for $m_{b\bar{b}}$ in SRHad-Low. All SRs selections but the one on the quantity shown are applied. All uncertainties are included in the uncertainty band. Two example SUSY models are superimposed for illustrative purposes.

Data and SM predictions in SRs for the $1lb\bar{b}$ analysis for $m_{CT}$ in SR1Lbb-High. All SRs selections but the one on the quantity shown are applied. All uncertainties are included in the uncertainty band. Example SUSY models are superimposed for illustrative purposes.

More…

Version 2
Probing the quantum interference between singly and doubly resonant top-quark production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 152002, 2018.
Inspire Record 1677498 DOI 10.17182/hepdata.83544

This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a $W$ boson and a $b$-quark are significant. Events with exactly two leptons ($ee$, $\mu\mu$, or $e\mu$) and two $b$-tagged jets that satisfy a multi-particle invariant mass requirement are selected from $36.1$ fb$^{-1}$ of proton-proton collision data taken at $\sqrt{s}=13$ TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are significantly different from each other but are within $2\sigma$ of the data. State-of-the-art predictions that naturally incorporate interference effects provide the best description of the data in the measured region of phase space most sensitive to these effects. These results provide an important constraint on interference models and will guide future model development and tuning.

15 data tables match query

The minimax-mbl distribution in the three-b-tag region, constructed from the two b-jets with largest transverse momentum. The predicted tt+HF contribution from simulation is scaled to match observed data in this region. The hashed band indicates the uncertainty on the total number of predicted events, where the DR scheme is used to estimate the minor contribution from the tW process. Uncertainties include all statistical and systematic sources.

The detector-level minimax-mbl distribution, with signal selection and background estimation as described in the text. The total predicted events are shown for both the DR and DS definitions of the tW process, with uncertainties on the respective estimates indicated by separate error bars. Uncertainties include all statistical and systematic sources.

The unfolded, normalized differential minimax-mbl cross-section compared with theoretical models of the tt+tWb signal with various implementations of interference effects. The uncertainty of each data point includes all statistical and systematic sources, while uncertainties for each of the MC predictions correspond to variations of the PDF set and renormalization and factorization scales.

More…

Measurements of fiducial and differential cross-sections of $t\bar{t}$ production with additional heavy-flavour jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 046, 2019.
Inspire Record 1705857 DOI 10.17182/hepdata.87098

This paper presents measurements of $t\bar{t}$ production in association with additional $b$-jets in $pp$ collisions at the LHC at a centre-of-mass energy of 13 TeV. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. Fiducial cross-section measurements are performed in the dilepton and lepton-plus-jets $t\bar{t}$ decay channels. Results are presented at particle level in the form of inclusive cross-sections of $t\bar{t}$ final states with three and four $b$-jets as well as differential cross-sections as a function of global event properties and properties of $b$-jet pairs. The measured inclusive fiducial cross-sections generally exceed the $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower but are compatible within the total uncertainties. The experimental uncertainties are smaller than the uncertainties in the predictions. Comparisons of state-of-the-art theoretical predictions with the differential measurements are shown and good agreement with data is found for most of them.

50 data tables match query

The measured fiducial cross sections

The measured fiducial cross sections

Relative differential cross section as a function of the b-jet multiplicity in emu channel

More…

Version 2
Measurement of jet fragmentation in Pb+Pb and $pp$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.C 98 (2018) 024908, 2018.
Inspire Record 1673177 DOI 10.17182/hepdata.91197

This paper presents a measurement of jet fragmentation functions in 0.49 nb$^{-1}$ of Pb+Pb collisions and 25 pb$^{-1}$ of $pp$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in $pp$ collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed.

182 data tables match query

The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.

The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.

The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.

More…

Version 2
Search for heavy charged long-lived particles in the ATLAS detector in 31.6 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 092007, 2019.
Inspire Record 1718558 DOI 10.17182/hepdata.86565

A search for heavy charged long-lived particles is performed using a data sample of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. The search is based on observables related to ionization energy loss and time of flight, which are sensitive to the velocity of heavy charged particles traveling significantly slower than the speed of light. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined as model-independently as possible, by referencing several representative physics cases that yield long-lived particles within supersymmetric models, such as gluinos/squarks ($R$-hadrons), charginos and staus. No significant deviations from the expected Standard Model background are observed. Upper limits at 95% confidence level are provided on the production cross sections of long-lived $R$-hadrons as well as directly pair-produced staus and charginos. These results translate into lower limits on the masses of long-lived gluino, sbottom and stop $R$-hadrons, as well as staus and charginos of 2000 GeV, 1250 GeV, 1340 GeV, 430 GeV and 1090 GeV, respectively.

60 data tables match query

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>

Lower mass requirement for signal regions.

More…

Measurements of inclusive and differential fiducial cross-sections of $t\bar{t}\gamma$ production in leptonic final states at $\sqrt{s}$ = 13 TeV in ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 382, 2019.
Inspire Record 1707015 DOI 10.17182/hepdata.88061

Inclusive and differential cross-sections for the production of a top-quark pair in association with a photon are measured with proton-proton collision data corresponding to an integrated luminosity of 36.1 fb$^{-1}$, collected by the ATLAS detector at the LHC in 2015 and 2016 at a centre-of-mass energy of 13 TeV. The measurements are performed in single-lepton and dilepton final states in a fiducial volume. Events with exactly one photon, one or two leptons, a channel-dependent minimum number of jets, and at least one $b$-jet are selected. Neural network algorithms are used to separate the signal from the backgrounds. The fiducial cross-sections are measured to be 521 $\pm$ 9(stat.) $\pm$ 41(sys.) fb and 69 $\pm$ 3(stat.) $\pm$ 4(sys.) fb for the single-lepton and dilepton channels, respectively. The differential cross-sections are measured as a function of photon transverse momentum, photon absolute pseudorapidity, and angular distance between the photon and its closest lepton in both channels, as well as azimuthal opening angle and absolute pseudorapidity difference between the two leptons in the dilepton channel. All measurements are in agreement with the theoretical predictions.

20 data tables match query

The measured fiducial cross section in the single lepton channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The measured fiducial cross section in the dilepton channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The measured normalized differential cross section as a function of the photon pT in the single lepton channel. The uncertainty is decomposed into five components which are the signal modelling uncertainty, the experimental uncertainty, the ttbar modelling uncertainty, the other background estimation uncertainty, and the data statistical uncertainty.

More…