Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with $b$-tagged jets in $pp$ collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3109, 2014.
Inspire Record 1301856 DOI 10.17182/hepdata.65210

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in $pp$ collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV with the ATLAS experiment at the LHC, using $t\bar{t}$ events with an opposite-charge $e\mu$ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ and the 2012 8 TeV dataset of 20.3 fb$^{-1}$. The cross-section was measured to be: $\sigma_{t\bar{t}}=182.9\pm 3.1\pm 4.2\pm 3.6 \pm 3.3$ pb ($\sqrt{s}=7$ TeV) and $\sigma_{t\bar{t}}=242.9\pm 1.7\pm 5.5\pm 5.1\pm 4.2$ pb ($\sqrt{s}=8$ TeV, updated as described in the Addendum), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically-predicted cross-section on $m_t^{\rm pole}$, giving a result of $m_t^{\rm pole}=172.9^{+2.5}_{-2.6}$ GeV. By looking for an excess of $t\bar{t}$ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks $\tilde{t}_1$ with masses close to the top quark mass decaying via $\tilde{t}_1\rightarrow t\tilde{\chi}^0_1$ to predominantly right-handed top quarks and a light neutralino $\tilde{\chi}_0^1$, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95% confidence level.

3 data tables match query

95% CL exclusion limit on signal strength.

95% CL exclusion limit on signal cross section for the 7 TeV dataset.

95% CL exclusion limit on signal cross section for the 8 TeV dataset.


Simultaneous measurements of the $t\bar{t}$, $W^+W^-$, and $Z/\gamma^{*}\rightarrow\tau\tau$ production cross-sections in $pp$ collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 91 (2015) 052005, 2015.
Inspire Record 1304455 DOI 10.17182/hepdata.67345

Simultaneous measurements of the $t\bar{t}$, $W^+W^-$, and $Z/\gamma^{*}\rightarrow\tau\tau$ production cross-sections using an integrated luminosity of $4.6\,\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 7\,\mathrm{TeV}$ collected by the ATLAS detector at the LHC are presented. Events are selected with two high transverse momentum leptons consisting of an oppositely charged electron and muon pair. The three processes are separated using the distributions of the missing transverse momentum of events with zero and greater than zero jet multiplicities. Measurements of the fiducial cross-section are presented along with results that quantify for the first time the underlying correlations in the predicted and measured cross-sections due to proton parton distribution functions. These results indicate that the correlated NLO predictions for $t\bar{t}$ and $Z/\gamma^{*}\rightarrow\tau\tau$ underestimate the data, while those at NNLO generally describe the data well. The full cross-sections are measured to be $\sigma(t\bar{t}) = 181.2 \pm 2.8^{+9.7}_{-9.5} \pm 3.3 \pm 3.3\,\mathrm{pb}$, $\sigma(W^+W^-) = 53.3 \pm 2.7^{+7.3}_{-8.0} \pm 1.0 \pm 0.5\,\mathrm{pb}$, and $\sigma(Z/\gamma^{*}\rightarrow\tau\tau) = 1174 \pm 24^{+72}_{-87} \pm 21 \pm 9\,\mathrm{pb}$, where the cited uncertainties are due to statistics, systematic effects, luminosity and the LHC beam energy measurement, respectively. The $W^+W^-$ measurement includes the small contribution from Higgs boson decays, $H\rightarrow W^+W^-$.

1 data table match query

Total $t\bar{t}$, $WW$, and $Z/\gamma^* \rightarrow \tau\tau$ cross-sections as measured simultaneously in this analysis with symmetrized uncertainties.


Measurement of jet shapes in top pair events at sqrt(s) = 7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 73 (2013) 2676, 2013.
Inspire Record 1243871 DOI 10.17182/hepdata.62685

A measurement of jet shapes in top-quark pair events using 1.8 fb$^{-1}$ of $\sqrt{s}$ = 7 TeV pp collision data recorded by the ATLAS detector is presented. Samples of top-quark pair events are selected in both the single-lepton and dilepton final states. The differential and integrated shapes of the jets initiated by bottom-quarks from the top-quark decays are compared with those of the jets originated by light-quarks from the hadronic W-boson decays $W \to q\bar{q}'$ in the single-lepton channel. The light-quark jets are found to have a narrower distribution of the momentum flow inside the jet area than b-quark jets.

10 data tables match query

Differential jet shape as a function of the radius r for the PT range 30-40 GeV.

Integrated jet shape as a function of the radius r for the PT range 30-40 GeV.

Differential jet shape as a function of the radius r for the PT range 40-50 GeV.

More…

Measurements of top quark pair relative differential cross-sections with ATLAS in pp collisions at sqrt(s) = 7 TeV

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 73 (2013) 2261, 2013.
Inspire Record 1123657 DOI 10.17182/hepdata.62290

Measurements are presented of differential cross-sections for top quark pair production in pp collisions at sqrt(s) = 7 TeV relative to the total inclusive top quark pair production cross-section. A data sample of 2.05/fb recorded by the ATLAS detector at the Large Hadron Collider is used. Relative differential cross-sections are derived as a function of the invariant mass, the transverse momentum and the rapidity of the top quark pair system. Events are selected in the lepton (electron or muon) + jets channel. The background-subtracted differential distributions are corrected for detector effects, normalized to the total inclusive top quark pair production cross-section and compared to theoretical predictions. The measurement uncertainties range typically between 10% and 20% and are generally dominated by systematic effects. No significant deviations from the Standard Model expectations are observed.

3 data tables match query

Relative differential cross-section (1/SIG)*D(SIG)/DM(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.

Relative differential cross-section (1/SIG)*D(SIG)/DPT(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.

Relative differential cross-section (1/SIG)*D(SIG)/DYRAP(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.


Measurement of the correlations between the polar angles of leptons from top quark decays in the helicity basis at $\sqrt{s}=7$TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 012002, 2016.
Inspire Record 1400803 DOI 10.17182/hepdata.76911

A measurement of the correlations between the polar angles of leptons from the decay of pair-produced $t$ and $\bar{t}$ quarks in the helicity basis is reported, using proton-proton collision data collected by the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 4.6fb$^{-1}$ at a center-of-mass energy of $\sqrt{s}=7$TeV collected during 2011. Candidate events are selected in the dilepton topology with large missing transverse momentum and at least two jets. The angles $\theta_1$ and $\theta_2$ between the charged leptons and the direction of motion of the parent quarks in the $t\bar{t}$ rest frame are sensitive to the spin information, and the distribution of {\mbox{$\cos\theta_1\cdot\cos\theta_2$}} is sensitive to the spin correlation between the $t$ and $\bar{t}$ quarks. The distribution is unfolded to parton level and compared to the next-to-leading order prediction. A good agreement is observed.

2 data tables match query

The numerical summary of the unfolded $\cos\theta_1\cdot\cos\theta_2$ distribution, with statistical and systematic uncertainties.

The correlation factors for the statistical uncertainties between any two bins of the unfolded distribution.


Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at $\sqrt{s}=7$ TeV in the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 06 (2015) 100, 2015.
Inspire Record 1345452 DOI 10.17182/hepdata.77064

Various differential cross-sections are measured in top-quark pair ($t\bar{t}$) events produced in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV at the LHC with the ATLAS detector. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of $4.6$ fb$^{-1}$. The differential cross-sections are presented in terms of kinematic variables, such as momentum, rapidity and invariant mass, of a top-quark proxyreferred to as the pseudo-top-quark as well as the pseudo-top-quark pair system. The dependence of the measurement on theoretical models is minimal. The measurements are performed on $t\bar{t}$ events in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a $b$-quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the $W$ boson produced by the top-quark decay in events with a single charged lepton. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.

21 data tables match query

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{h}})$in the muon channel. The results shown in this table are one of the inputs for the combined results.

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{h}})$ in the electron channel. The results shown in this table are one of the inputs for the combined results.

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $|y(\hat{t}_{\mathrm{h}})|$ in the muon channel. The results shown in this table are one of the inputs for the combined results.

More…

Measurement of the $t\bar{t}$ production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 01 (2015) 020, 2015.
Inspire Record 1304688 DOI 10.17182/hepdata.18665

The $t\bar{t}$ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton--proton collisions at a centre-of-mass energy of 7 TeV in the single-lepton channel. The data were collected with the ATLAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to the fifth jet. The results are shown after background subtraction and corrections for all detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. The MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.

9 data tables match query

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 25 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 40 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 60 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

More…

Measurements of top-quark pair to $Z$-boson cross-section ratios at $\sqrt s = 13, 8, 7$TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 02 (2017) 117, 2017.
Inspire Record 1502921 DOI 10.17182/hepdata.75536

Ratios of top-quark pair to $Z$-boson cross sections measured from proton--proton collisions at the LHC centre-of-mass energies of $\sqrt s=13$TeV, 8TeV, and 7TeV are presented by the ATLAS Collaboration. Single ratios, at a given $\sqrt s$ for the two processes and at different $\sqrt s$ for each process, as well as double ratios of the two processes at different $\sqrt s$, are evaluated. The ratios are constructed using previously published ATLAS measurements of the $t\overline{t}$ and $Z$-boson production cross sections, corrected to a common phase space where required, and a new analysis of $Z \rightarrow \ell^+ \ell^-$ where $\ell=e,\mu$ at $\sqrt s=13$TeV performed with data collected in 2015 with an integrated luminosity of $3.2$fb$^{-1}$. Correlations of systematic uncertainties are taken into account when evaluating the uncertainties in the ratios. The correlation model is also used to evaluate the combined cross section of the $Z\rightarrow e^+e^-$ and the $Z\rightarrow \mu^+ \mu^-$ channels for each $\sqrt s$ value. The results are compared to calculations performed at next-to-next-to-leading-order accuracy using recent sets of parton distribution functions. The data demonstrate significant power to constrain the gluon distribution function for the Bjorken-$x$ values near 0.1 and the light-quark sea for $x<0.02$.

11 data tables match query

Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+e- final state at 13TeV.

Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state at 13TeV.

Breakdown of systematic uncertainties in percent for the measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+e- final state at 13TeV.

More…

Measurement of top quark pair differential cross-sections in the dilepton channel in $pp$ collisions at $\sqrt{s}$ = 7 and 8 TeV with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 092003, 2016.
Inspire Record 1477814 DOI 10.17182/hepdata.75323

Measurements of normalized differential cross-sections of top quark pair ($t\bar t$) production are presented as a function of the mass, the transverse momentum and the rapidity of the $t\bar t$ system in proton-proton collisions at center-of-mass energies of $\sqrt{s}$ = 7 TeV and 8 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb$^{-1}$ at 7 TeV and 20.2 fb$^{-1}$ at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a $b$-hadron. The measured distributions are corrected for detector effects and selection efficiency to cross-sections at the parton level. The differential cross-sections are compared with different Monte Carlo generators and theoretical calculations of $t\bar t$ production. The results are consistent with the majority of predictions in a wide kinematic range.

36 data tables match query

Parton-level normalized $t\bar t$ differential cross-sections for $t\bar t$ system mass $m_{t\bar t}$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

Parton-level normalized $t\bar t$ differential cross-sections for the $t\bar t$ system transverse momentum $p_{T, t\bar t}$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

Parton-level normalized $t\bar t$ differential cross-sections for the $t\bar t$ system absolute rapidity $|y_{t\bar t}|$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

More…

Measurement of $K_S^0$ and $\Lambda^0$ production in $t \bar{t}$ dileptonic events in $pp$ collisions at $\sqrt{s} =$ 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 1017, 2019.
Inspire Record 1746286 DOI 10.17182/hepdata.91243

Measurements of $K_S^0$ and $\Lambda^0$ production in $t\bar{t}$ final states have been performed. They are based on a data sample with integrated luminosity of 4.6 $\mathrm{fb}^{-1}$ from proton-proton collisions at a centre-of-mass energy of 7 TeV, collected in 2011 with the ATLAS detector at the Large Hadron Collider. Neutral strange particles are separated into three classes, depending on whether they are contained in a jet, with or without a $b$-tag, or not associated with a selected jet. The aim is to look for differences in their main kinematic distributions. A comparison of data with several Monte Carlo simulations using different hadronisation and fragmentation schemes, colour reconnection models and different tunes for the underlying event has been made. The production of neutral strange particles in $t\bar{t}$ dileptonic events is found to be well described by current Monte Carlo models for $K_S^0$ and $\Lambda^0$ production within jets, but not for those produced outside jets.

22 data tables match query

The transverse momentum ($p_{T}$) distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking inefficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

The energy fraction ($x_{K}$) distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking ineficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

The energy distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking ineficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

More…