Search for Diphoton Events with Large Missing Transverse Energy with 36 pb$^{-1}$ of 7 TeV Proton-Proton Collision Data with the {ATLAS} Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 71 (2011) 1744, 2011.
Inspire Record 916840 DOI 10.17182/hepdata.58302

Making use of 36 pb^-1 of proton-proton collision data at sqrt{s} = 7 TeV, the ATLAS Collaboration has performed a search for diphoton events with large missing transverse energy. Observing no excess of events above the Standard Model prediction, a 95% Confidence Level (CL) upper limit is set on the cross section for new physics of sigma < 0.38 - 0.65 pb in the context of a generalised model of gauge mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, and of sigma < 0.18 - 0.23 pb in the context of a specific model with one universal extra dimension (UED). A 95 % CL lower limit of 560 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass, while a lower limit of 1/R > 961 GeV is set on the UED compactification radius R. These limits provide the most stringent tests of these models to date.

0 data tables match query

Further search for supersymmetry at sqrt(s) = 7 TeV in final states with jets, missing transverse momentum and isolated leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 86 (2012) 092002, 2012.
Inspire Record 1180197 DOI 10.17182/hepdata.1220

This work presents a new inclusive search for supersymmetry (SUSY) by the ATLAS experiment at the LHC in proton-proton collisions at a center-of-mass energy sqrt(s) = 7 TeV in final states with jets, missing transverse momentum and one or more isolated electrons and/or muons. The search is based on data from the full 2011 data-taking period, corresponding to an integrated luminosity of 4.7 inverse fb. Single- and multi-lepton channels are treated together in one analysis. An increase in sensitivity is obtained by simultaneously fitting the number of events in statistically independent signal regions, and the shapes of distributions within those regions. A dedicated signal region is introduced to be sensitive to decay cascades of SUSY particles with small mass differences ("compressed SUSY"). Background uncertainties are constrained by fitting to the jet multiplicity distribution in background control regions. Observations are consistent with Standard Model expectations, and limits are set or extended on a number of SUSY models.

0 data tables match query

Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 045, 2016.
Inspire Record 1468068 DOI 10.17182/hepdata.78403

Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.

44 data tables match query

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.

More…

Evidence for Higgs boson decays to a low-mass dilepton system and a photon in pp collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale Charles ; et al.
Phys.Lett.B 819 (2021) 136412, 2021.
Inspire Record 1852325 DOI 10.17182/hepdata.102955

A search for the Higgs boson decaying into a photon and a pair of electrons or muons with an invariant mass $m_{\ell\ell} < 30$ GeV is presented. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data, produced by the LHC at a centre-of-mass energy of 13 TeV and collected by the ATLAS experiment. Evidence for the $H \rightarrow \ell \ell \gamma$ process is found with a significance of 3.2$\sigma$ over the background-only hypothesis, compared to an expected significance of 2.1$\sigma$. The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the Standard Model, is $\mu = 1.5 \pm 0.5$. The Higgs boson production cross-section times the $H \rightarrow\ell\ell\gamma$ branching ratio for $m_{\ell\ell} <$ 30 GeV is determined to be 8.7 $^{+2.8}_{-2.7}$ fb.

3 data tables match query

Number of data events selected in each analysis category in the $m_{\ell\ell\gamma}$ mass range of 110--160 GeV. In addition, the following numbers are given: number of $H\rightarrow\gamma^{*}\gamma\rightarrow \ell\ell\gamma$ events in the smallest $m_{\ell\ell\gamma}$ window containing 90\% of the expected signal ($S_{90}$), the non-resonant background in the same interval ($B_{90}^N$) as estimated from fits to the data sidebands using the background models, the resonant background in the same interval ($B_{H\rightarrow\gamma\gamma}$), the expected signal purity $f_{90} = S_{90}/(S_{90}+B_{90})$, and the expected significance estimate defined as $Z_{90} = \sqrt{ 2( (S_{90}+B_{90})\,\ln(1+S_{90}/B_{90}) - S_{90}) }$ where $B_{90} = B_{90}^N+B_{H\rightarrow\gamma\gamma}$. $B_{H\rightarrow\gamma\gamma}$ is only relevant for the electron categories and is marked as 0 otherwise

The best fit value for the signal yield normalised to the Standard Model prediction (signal strength) for $pp \to H \to Z+\gamma$

Measured $\sigma( p p \rightarrow H) \cdot B(H\rightarrow \ell\ell\gamma)$ for $m_{\ell\ell} < 30$ GeV


Measurements of $W^+W^-+\ge 1~$jet production cross-sections in $pp$ collisions at $\sqrt{s}=13~$TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale Charles ; et al.
JHEP 06 (2021) 003, 2021.
Inspire Record 1852328 DOI 10.17182/hepdata.100511

Fiducial and differential measurements of $W^+W^-$ production in events with at least one hadronic jet are presented. These cross-section measurements are sensitive to the properties of electroweak-boson self-interactions and provide a test of perturbative quantum chromodynamics and the electroweak theory. The analysis is performed using proton$-$proton collision data collected at $\sqrt{s}=13~$TeV with the ATLAS experiment, corresponding to an integrated luminosity of 139$~$fb$^{-1}$. Events are selected with exactly one oppositely charged electron$-$muon pair and at least one hadronic jet with a transverse momentum of $p_{\mathrm{T}}>30~$GeV and a pseudorapidity of $|\eta|<4.5$. After subtracting the background contributions and correcting for detector effects, the jet-inclusive $W^+W^-+\ge 1~$jet fiducial cross-section and $W^+W^-+$ jets differential cross-sections with respect to several kinematic variables are measured, thus probing a previously unexplored event topology at the LHC. These measurements include leptonic quantities, such as the lepton transverse momenta and the transverse mass of the $W^+W^-$ system, as well as jet-related observables such as the leading jet transverse momentum and the jet multiplicity. Limits on anomalous triple-gauge-boson couplings are obtained in a phase space where interference between the Standard Model amplitude and the anomalous amplitude is enhanced.

55 data tables match query

Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.

Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 1168 GeV.

Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$

More…

Summary of the ATLAS experiment's sensitivity to supersymmetry after LHC Run 1 - interpreted in the phenomenological MSSM

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 10 (2015) 134, 2015.
Inspire Record 1389857 DOI 10.17182/hepdata.69233

A summary of the constraints from the ATLAS experiment on $R$-parity conserving supersymmetry is presented. Results from 22 separate ATLAS searches are considered, each based on analysis of up to 20.3 fb$^{-1}$ of proton-proton collision data at the centre-of-mass energy of $\sqrt{s}$ = 7 and 8 TeV at the Large Hadron Collider. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, in which the lightest supersymmetric particle is a neutralino, taking into account constraints from previous precision electroweak and flavour measurements as well as from dark matter related measurements. The results are presented in terms of constraints on supersymmetric particle masses and are compared to limits from simplified models. The impact of ATLAS searches on parameters such as the dark matter relic density, the couplings of the observed Higgs boson, and the degree of electroweak fine-tuning is also shown. Spectra for surviving supersymmetry model points with low fine-tunings are presented.

0 data tables match query

A measurement of the ratio of the W and Z cross sections with exactly one associated jet in pp collisions at sqrt(s) = 7 TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 708 (2012) 221-240, 2012.
Inspire Record 924848 DOI 10.17182/hepdata.61707

The ratio of production cross sections of the W and Z bosons with exactly one associated jet is presented as a function of jet transverse momentum threshold. The measurement has been designed to maximise cancellation of experimental and theoretical uncertainties, and is reported both within a particle-level kinematic range corresponding to the detector acceptance and as a total cross-section ratio. Results are obtained with the ATLAS detector at the LHC in pp collisions at a centre-of-mass energy of 7 TeV using an integrated luminosity of 33 pb^-1. The results are compared with perturbative leading-order, leading-log, and next-to-leading-order QCD predictions, and are found to agree within experimental and theoretical uncertainties. The ratio is measured for events with a single jet with p_T > 30 GeV to be 8.73 +/- 0.30 (stat) +/- 0.40 (syst) in the electron channel, and $ 8.49 +/- 0.23 (stat) +/- 0.33 (syst) in the muon channel.

2 data tables match query

The ratio of W to Z production corrected to full phase space for the two channels combined.

The ratios of W to Z production in the fiducial region for the individual lepton channels and for the channels combined.


Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 706 (2011) 150-167, 2011.
Inspire Record 921594 DOI 10.17182/hepdata.57899

A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.

4 data tables match query

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 TO 1.37.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 TO 1.81.

More…

Search for New Physics in the Dijet Mass Distribution using 1 fb^-1 of pp Collision Data at sqrt(s) = 7 TeV collected by the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 708 (2012) 37-54, 2012.
Inspire Record 925933 DOI 10.17182/hepdata.57981

Invariant mass distributions of jet pairs (dijets) produced in LHC proton-proton collisions at a centre-of-mass energy sqrt(s)=7 TeV have been studied using a data set corresponding to an integrated luminosity of 1.0 fb^-1 recorded in 2011 by ATLAS. Dijet masses up to ~4 TeV are observed in the data, and no evidence of resonance production over background is found. Limits are set at 95% CL for several new physics hypotheses: excited quarks are excluded for masses below 2.99 TeV, axigluons are excluded for masses below 3.32 TeV, and colour octet scalar resonances are excluded for masses below 1.92 TeV.

1 data table match query

The observed di-jet mass distribution together with the background QCD prediction.


Measurement of the Inelastic Proton-Proton Cross-Section at sqrt{s}=7 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nature Commun. 2 (2011) 463, 2011.
Inspire Record 894867 DOI 10.17182/hepdata.58283

A first measurement of the inelastic cross-section is presented for proton-proton collisions at a center of mass energy sqrt{s}=7 TeV using the ATLAS detector at the Large Hadron Collider. In a dataset corresponding to an integrated luminosity of 20 mub-1, events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of $60.3 +/- 2.1 mb is measured for xi > 5x10^-6, where xi=M_X^2/s is calculated from the invariant mass, M_X, of hadrons selected using the largest rapidity gap in the event. For diffractive events this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.

1 data table match query

The measured and extrapolated inelastic cross section. The first error is the experimental error and the second (sys) error is the error in the extrapolation.