Measurement of the forward-backward asymmetries in the production of $\Xi$ and $\Omega$ baryons in $p \bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 93 (2016) 112001, 2016.
Inspire Record 1457606 DOI 10.17182/hepdata.78545

We measure the forward-backward asymmetries $A_{\rm FB}$ of charged $\Xi$ and $\Omega$ baryons produced in $p \bar{p}$ collisions recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV as a function of the baryon rapidity $y$. We find that the asymmetries $A_{\rm FB}$ for charged $\Xi$ and $\Omega$ baryons are consistent with zero within statistical uncertainties.

1 data table match query

Forward-backward asymmetry $A_{\rm FB}$ of $\Xi^\mp$ baryons with $p_T > 2$ GeV in minimum bias events, $p\bar{p} \rightarrow \Xi^\mp X$, and muon events $p \bar{p} \rightarrow \mu \Xi^\mp X$, and $A_{\rm FB}$ of $\Omega^-$ and $\Omega^+$ baryons with $p_T > 2$ GeV in muon events $p \bar{p} \rightarrow \mu \Omega^\mp X$. The first uncertainty is statistical, the second is systematic due to the detector asymmetry $A'_{\rm NS} A'_\Xi$.


Measurement of the Inclusive $t\bar{t}$ Production Cross Section in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV and Determination of the Top Quark Pole Mass

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 94 (2016) 092004, 2016.
Inspire Record 1463281 DOI 10.17182/hepdata.78547

The inclusive cross section of top quark-antiquark pairs produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV is measured in the lepton$+$jets and dilepton decay channels. The data sample corresponds to 9.7 fb${}^{-1}$ of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Employing multivariate analysis techniques we measure the cross section in the two decay channels and we perform a combined cross section measurement. For a top quark mass of 172.5 GeV, we measure a combined inclusive top quark-antiquark pair production cross section of $\sigma_{t\bar{t}} = 7.26 \pm 0.13\,(\mathrm{stat.})\,^{+0.57}_{-0.50}\,(\mathrm{syst.})$ pb which is consistent with standard model predictions. We also perform a likelihood fit to the measured and predicted top quark mass dependence of the inclusive cross section, which yields a measurement of the pole mass of the top quark. The extracted value is $m_t = 172.8 \pm 1.1\,(\mathrm{theo.})\,^{+3.3}_{-3.1}\,(\mathrm{exp.})$ GeV.

1 data table match query

The measured combined inclusive $t\bar{t}$ cross section as a function of the top quark MC mass with statistical and systematic uncertainties given separately.


Measurement of the normalized Z/gamma*->mu+mu- transverse momentum distribution in p\bar{p} collisions at sqrt{s}=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Abolins, Maris A. ; et al.
Phys.Lett.B 693 (2010) 522-530, 2010.
Inspire Record 856972 DOI 10.17182/hepdata.55457

We present a new measurement of the Z/gamma* transverse momentum distribution in the range 0 - 330GeV, in proton-antiproton collisions at sqrt{s}=1.96 TeV. The measurement uses 0.97 fb-1 of integrated luminosity recorded by the D0 experiment and is the first using the Z/gamma*->mu+mu- + X channel at this center-of-mass energy. This is also the first measurement of the Z/gamma* transverse momentum distribution that presents the result at the level of particles entering the detector, minimizing dependence on theoretical models. As any momentum of the Z/gamma* in the plane transverse to the incoming beams must be balanced by some recoiling system, primarily the result of QCD radiation in the initial state, this variable is an excellent probe of the underlying process. Tests of the predictions of QCD calculations and current event generators show they have varied success in describing the data. Using this measurement as an input to theoretical predictions will allow for a better description of hadron collider data and hence it will increase experimental sensitivity to rare signals.

2 data tables match query

Normalized differential cross section.

Absolute differential cross section produced by multiplying by the measuredtotal cross section (118 pb).


Measurement of $Z / \gamma^\ast +jet+X$ angular distributions in $p \bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Abolins, Maris A. ; et al.
Phys.Lett.B 682 (2010) 370-380, 2010.
Inspire Record 826756 DOI 10.17182/hepdata.52513

We present the first measurements at a hadron collider of differential cross sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and |y_boost(Z, jet)|. Vector boson production in association with jets is an excellent probe of QCD and constitutes the main background to many small cross section processes, such as associated Higgs production. These measurements are crucial tests of the predictions of perturbative QCD and current event generators, which have varied success in describing the data. Using these measurements as inputs in tuning event generators will increase the experimental sensitivity to rare signals.

12 data tables match query

Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 25 GeV.

Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 45 GeV.

Differential cross section in bins of ABS(YRAP(P=3)-YRAP(P=4)) for Z/GAMMA* transverse momentum > 25 GeV.

More…

Precise study of the Z/gamma* boson transverse momentum distribution in ppbar collisions using a novel technique

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Abolins, Maris A. ; et al.
Phys.Rev.Lett. 106 (2011) 122001, 2011.
Inspire Record 871787 DOI 10.17182/hepdata.56732

Using 7.3 pb-1 of ppbar collisions collected by the D0 detector at the Fermilab Tevatron, we measure the distribution of the variable \phistar, which probes the same physical effects as the Z/gamma* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. A QCD prediction is found to describe the general features of the \phistar distribution, but is unable to describe its detailed shape or dependence on boson rapidity. A prediction that includes a broadening of transverse momentum for small values of the parton momentum fraction is strongly disfavored.

2 data tables match query

The measured PHI* distributions for the dielectron events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.

The measured PHI* distributions for the dimuon events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.


Observation of s-channel production of single top quarks at the Tevatron

The CDF & D0 collaborations Aaltonen, Timo Antero ; Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 112 (2014) 231803, 2014.
Inspire Record 1282028 DOI 10.17182/hepdata.64717

We report the first observation of single-top-quark production in the s channel through the combination of the CDF and D0 measurements of the cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment. The measured cross section is $\sigma_s = 1.29^{+0.26}_{-0.24}$ pb. The probability of observing a statistical fluctuation of the background to a cross section of the observed size or larger is $1.8 \times 10^{-10}$, corresponding to a significance of 6.3 standard deviations for the presence of an s-channel contribution to the production of single-top quarks.

1 data table match query

The measured cross section of single-top-quark production in the s channel.