Measurement of energy flow, cross section and average inelasticity of forward neutrons produced in $\mathrm{\sqrt{s} = 13 TeV}$ proton-proton collisions with the LHCf Arm2 detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
JHEP 07 (2020) 016, 2020.
Inspire Record 1783943 DOI 10.17182/hepdata.130268

In this paper, we report the measurement of the energy flow, the cross section and the average inelasticity of forward neutrons (+ antineutrons) produced in $\sqrt{s} = 13$ TeV proton-proton collisions. These quantities are obtained from the inclusive differential production cross section, measured using the LHCf Arm2 detector at the CERN Large Hadron Collider. The measurements are performed in six pseudorapidity regions: three of them ($\eta > 10.75$, $8.99 < \eta < 9.21$ and $8.80 < \eta < 8.99$), albeit with smaller acceptance and larger uncertainties, were already published in a previous work, whereas the remaining three ($10.06 < \eta < 10.75$, $9.65 < \eta < 10.06$ and $8.65 < \eta < 8.80$) are presented here for the first time. The analysis was carried out using a data set acquired in June 2015 with a corresponding integrated luminosity of $\mathrm{0.194~nb^{-1}}$. Comparing the experimental measurements with the expectations of several hadronic interaction models used to simulate cosmic ray air showers, none of these generators resulted to have a satisfactory agreement in all the phase space selected for the analysis. The inclusive differential production cross section for $\eta > 10.75$ is not reproduced by any model, whereas the results still indicate a significant but less serious deviation at lower pseudorapidities. Depending on the pseudorapidity region, the generators showing the best overall agreement with data are either SIBYLL 2.3 or EPOS-LHC. Furthermore, apart from the most forward region, the derived energy flow and cross section distributions are best reproduced by EPOS-LHC. Finally, even if none of the models describe the elasticity distribution in a satisfactory way, the extracted average inelasticity is consistent with the QGSJET II-04 value, while most of the other generators give values that lie just outside the experimental uncertainties.

9 data tables match query

Neutron (and antineutron) inclusive differential production cross section in $\eta > 10.75$

Neutron (and antineutron) inclusive differential production cross section in $10.06 < \eta < 10.75$

Neutron (and antineutron) inclusive differential production cross section in $9.65 < \eta < 10.06$

More…

First measurement of sigma (p anti-p ---> Z) . Br (Z ---> tau tau) at s**(1/2) = 1.96- TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 71 (2005) 072004, 2005.
Inspire Record 666357 DOI 10.17182/hepdata.50921

We present a measurement of the cross section for $Z$ production times the branching fraction to $\tau$ leptons, $\sigma \cdot$Br$(Z\to \tau^+ \tau^-)$, in $p \bar p$ collisions at $\sqrt{s}=$1.96 TeV in the channel in which one $\tau$ decays into $\mu \nu_{\mu} \nu_{\tau}$, and the other into $\rm {hadrons} + \nu_{\tau}$ or $e \nu_e \nu_{\tau}$. The data sample corresponds to an integrated luminosity of 226 pb$^{-1}$ collected with the D{\O}detector at the Fermilab Tevatron collider. The final sample contains 2008 candidate events with an estimated background of 55%. From this we obtain $\sigma \cdot$Br$(Z \to \tau^+ \tau^-)=237 \pm 15$(stat)$\pm 18$(sys)$ \pm 15$(lum) pb, in agreement with the standard model prediction.

1 data table match query

Measured cross section times branching ratio.


Search for top squark pair production in the dielectron channel

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 57 (1998) 589-593, 1998.
Inspire Record 427311 DOI 10.17182/hepdata.41662

This report describes the first search for top squark pair production in the channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using 74.9 +- 8.9 pb~-1 of data collected using the D0 detector. A 95% confidence level upper limit on sigma*B is presented. The limit is above the theoretical expectation for sigma*B for this process, but does show the sensitivity of the current D0 data set to a particular topology for new physics.

1 data table match query

Data are extracted from the figure. Sigma*Br.


Measurement of the top quark pair production cross-section in p anti-p collisions using multijet final states

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 012001, 1999.
Inspire Record 475565 DOI 10.17182/hepdata.42156

We have studied tbar-t production using multijet final states in pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity of 110.3 pb(-1). Each of the top quarks with these final states decays exclusively to a bottom quark and a W boson, with the W bosons decaying into quark-antiquark pairs. The analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on the tbar-t production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with previous D0 measurements, where one or both of the W bosons decay leptonically, gives a tbar t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.

1 data table match query

The second value is the combination of the data reported here combined withthe previous result of D0 reported in PRL 79(1997)1203.


Search for bottom squarks in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 031101, 1999.
Inspire Record 496902 DOI 10.17182/hepdata.42120

We report on a search for bottom squarks produced in pbarp collisions at sqrt(s) = 1.8 TeV using the D0 detector at Fermilab. Bottom squarks are assumed to be produced in pairs and to decay to the lightest supersymmetric particle (LSP) and a b quark with branching fraction of 100%. The LSP is assumed to be the lightest neutralino and stable. We set limits on the production cross section as a function of bottom squark mass and LSP mass.

1 data table match query

It is assumed that the S-BQ decays intp BQ and LSP with a branching fraction of 100%.


Extraction of the width of the W boson from measurements of sigma(p anti-p ---> W + X) x B(W ---> e neutrino) and sigma(p anti-p ---> Z + X) x B(Z ---> e e) and their ratio

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 61 (2000) 072001, 2000.
Inspire Record 501703 DOI 10.17182/hepdata.42085

We report on measurements of inclusive cross sections times branching fractions into electrons for W and Z bosons produced in ppbar collisions at sqrts=1.8 TeV.From an integrated luminosity of 84.5 inverse pb recorded in 1994--1995 using the D0 detector at the Fermilab Tevatron, we determine sigma(ppbar->W+X)B(W->e nu) = 2310 +- 10(stat) +- 50(syst) +- 100(lum) pb and sigma(ppbar->Z+X)B(Z->e e) = 221 +- 3(stat) +- 4(syst) +- 10(lum) pb. From these, we derive their Ratio R = 10.43 +- 0.15(stat) +- 0.20(syst) +- 0.10(NLO), B(W->e nu) = 0.1066 +- 0.0015(stat) +- 0.0021(syst) +- 0.0011(theory)+- 0.0011(NLO), and Gamma_W = 2.130 +- 0.030(stat) +- 0.041(syst) +- 0.022(theory) +- 0.021(NLO) GeV. We use the latter to set a 95% confidence level upper limit on the partial decay width of the W boson into non-standard model final states, Gamma_W^{inv}, of 0.168 GeV. Combining these results with those from the 1992--1993 data gives R = 10.54 +- 0.24, Gamma_W = 2.107 +- 0.054 GeV, and a 95% C.L. upper limit on Gamma_W^{inv} of 0.132 GeV. Using a sample with a luminosity of 505 inverse nb taken at sqrts=630 GeV, we measure sigma(ppbar->W+X)B(W->e nu) = 658 +- 67 pb.

2 data tables match query

Cross sections times branching ratios for W+- and Z0 production. The second DSYS error is due to the uncertainty in the luminosity.

Ratio of W to Z0 cross sections. The second systematic error is due to the uncertainty in the NLO electroweak radiative corrections.


Direct measurement of the top quark mass at D\O

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, B.S. ; et al.
Phys.Rev.D 58 (1998) 052001, 1998.
Inspire Record 466578 DOI 10.17182/hepdata.42170

We determine the top quark mass m_t using t-tbar pairs produced in the D0 detector by \sqrt{s} = 1.8 TeV p-pbar collisions in a 125 pb^-1 exposure at the Fermilab Tevatron. We make a two constraint fit to m_t in t-tbar -> b W^+bbar W^- final states with one W boson decaying to q-qbar and the other to e-nu or mu-nu. Likelihood fits to the data yield m_t(l+jets) = 173.3 +- 5.6 (stat) +- 5.5 (syst) GeV/c^2. When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain m_t = 172.1 +- 5.2 (stat) +- 4.9 (syst) GeV/c^2. An alternate analysis, using three constraint fits to fixed top quark masses, gives m_t(l+jets) = 176.0 +- 7.9 (stat) +- 4.8 (syst) GeV/C^2, consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented.

1 data table match query

No description provided.


Measurement of W and Z boson production cross-sections

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 052003, 1999.
Inspire Record 494696 DOI 10.17182/hepdata.42125

DO has measured the inclusive production cross section of W and Z bosons in a sample of 13 pb$^{-1}$ of data collected at the Fermilab Tevatron. The cross sections, multiplied by their leptonic branching fractions, for production in pbar-p collisions at sqrt{s}=1.8 TeV are sigma_W*B(W->e nu) = 2.36+-0.02+-0.08+-0.13 nb, sigma_W*B(W->mu nu) = 2.09+-0.06+-0.22+-0.11 nb, sigma_Z*B(Z->e+ e-) = 0.218+-0.008+-0.008+-0.012 nb, and sigma_Z*B(Z->mu+ mu-) = 0.178+-0.022+-0.021+-0.009 nb, where the first uncertainty is statistical and the second systematic; the third reflects the uncertainty in the integrated luminosity. For the combined electron and muon analyses, we find sigma_W*B(W->l mu)/sigma_Z*B(Z->l+ l-) = 10.90+-0.52. Assuming standard model couplings, we use this result to determine the width of the W boson, and obtain Gamma(W) = 2.044+-0.097 GeV.

2 data tables match query

No description provided.

Combined electron and muon analysis.


Measurement of the top quark pair production cross-section in p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 79 (1997) 1203-1208, 1997.
Inspire Record 442536 DOI 10.17182/hepdata.42194

We present a measurement of the ttbar production cross section in ppbar collisions at root(s) = 1.8TeV by the D0 experiment at the Fermilab Tevatron. The measurement is based on data from an integrated luminosity of approximately 125 pb~-1 accumulated during the 1992-1996 collider run. We observe 39 ttbar candidate events in the dilepton and lepton+jets decay channels with an expected background of 13.7+-2.2 events. For a top quark mass of 173.3GeV/c~2, we measure the ttbar production cross section to be 5.5+-1.8 pb.

1 data table match query

Different channels are used for evaluation of the cross section magnitudes. The last value is obtained from the previous one by adding the errors in quadrature.


Measurement of the p - anti-p ---> W gamma + X cross section at s**(1/2) = 1.96-TeV and WW gamma anomalous coupling limits

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 71 (2005) 091108, 2005.
Inspire Record 679253 DOI 10.17182/hepdata.42778

The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.

1 data table match query

Measured cross section for the electron and muon channels combined.


Search for first-generation scalar and vector leptoquarks

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Rev.D 64 (2001) 092004, 2001.
Inspire Record 557085 DOI 10.17182/hepdata.42922

We describe a search for the pair production of first-generation scalar and vector leptoquarks in the eejj and enujj channels by the D0 Collaboration. The data are from the 1992--1996 ppbar run at sqrt{s} = 1.8 TeV at the Fermilab Tevatron collider. We find no evidence for leptoquark production; in addition, no kinematically interesting events are observed using relaxed selection criteria. The results from the eejj and enujj channels are combined with those from a previous D0 analysis of the nunujj channel to obtain 95% confidence level (C.L.) upper limits on the leptoquark pair-production cross section as a function of mass and of beta, the branching fraction to a charged lepton. These limits are compared to next-to-leading-order theory to set 95% C.L. lower limits on the mass of a first-generation scalar leptoquark of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively. For vector leptoquarks with gauge (Yang-Mills) couplings, 95% C.L. lower limits of 345, 337, and 206 GeV/c^2 are set on the mass for beta=1, 1/2, and 0, respectively. Mass limits for vector leptoquarks are also set for anomalous vector couplings.

3 data tables match query

No description provided.

No description provided.

No description provided.


t anti-t production cross-section in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Rev.D 67 (2003) 012004, 2003.
Inspire Record 586609 DOI 10.17182/hepdata.54899

Results are presented on a measurement of the ttbar pair production cross section in ppbar collisions at sqrt{s} = 1.8 TeV from nine independent decay channels. The data were collected by the Dzero experiment during the 1992-1996 run of the Fermilab Tevatron Collider. A total of 80 candidate events are observed with an expected background of 38.8 +- 3.3 events. For a top quark mass of 172.1 GeV/c^2, the measured cross section is 5.69 +- 1.21 (stat) +- 1.04 (sys) pb.

1 data table match query

Measured top quark pair production cross section in the different channels and the various averages, including the overall average.


Measurement of the t anti-t production cross section in p anti-p collisions at s**(1/2) = 1.96-TeV in dilepton final states

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 626 (2005) 55-64, 2005.
Inspire Record 683416 DOI 10.17182/hepdata.42759

We present a measurement of the top quark pair (ttbar) production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb-1 of data collected by the DO detector at the Fermilab Tevatron Collider. We select events in the dilepton final states ee, emu and mumu based on kinematical properties consistent with ttbar events. For a top quark mass of 175 GeV, we measure a top pair production cross section sigma(ttbar) = 8.6 +3.2-2.7 (stat) +/-1.1 (syst) +/-0.6 (lumi) pb, in good agreement with the standard model prediction.

1 data table match query

TTBAR production cross section.


A search for heavy pointlike Dirac monopoles

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 81 (1998) 524-529, 1998.
Inspire Record 468445 DOI 10.17182/hepdata.42158

We have searched for central production of a pair of photons with high transverse energies in $p\bar p$ collisions at $\sqrt{s} = 1.8$ TeV using $70 pb^{-1}$ of data collected with the D\O detector at the Fermilab Tevatron in 1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of $610, 870, or 1580 GeV/c^2$ on the mass of a spin 0, 1/2, or 1 Dirac monopole.

1 data table match query

No description provided.


Search for single top quark production at D\O\ using neural networks

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Lett.B 517 (2001) 282-294, 2001.
Inspire Record 558406 DOI 10.17182/hepdata.42932

We present a search for electroweak production of single top quarks in $\approx 90$ $pb^{-1}$ of data collected with the DZero detector at the Fermilab Tevatron collider. Using arrays of neural networks to separate signals from backgrounds, we set upper limits on the cross sections of 17 pb for the s-channel process $p\bar{p} \to tb + X$, and 22 pb for the t-channel process $p\bar{p} \to tqb + X$, both at the 95% confidence level.

1 data table match query

No description provided.


Probing BFKL dynamics in the dijet cross-section at large rapidity intervals in p anti-p collisions at S**(1/2) = 1800-GeV and 630-GeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 84 (2000) 5722-5727, 2000.
Inspire Record 511525 DOI 10.17182/hepdata.41510

Inclusive dijet production at large pseudorapidity intervals (delta_eta) between the two jets has been suggested as a regime for observing BFKL dynamics. We have measured the dijet cross section for large delta_eta in ppbar collisions at sqrt{s}=1800 and 630 GeV using the DO detector. The partonic cross section increases strongly with the size of delta_eta. The observed growth is even stronger than expected on the basis of BFKL resummation in the leading logarithmic approximation. The growth of the partonic cross section can be accommodated with an effective BFKL intercept of a_{BFKL}(20GeV)=1.65+/-0.07.

4 data tables match query

Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).

Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).

Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).

More…

Measurement of the high-mass Drell-Yan cross section and limits on quark-electron compositeness scales

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 4769-4774, 1999.
Inspire Record 480590 DOI 10.17182/hepdata.42142

We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using 120/pb of data collected in pbar-p collisions at sqrt(s) = 1.8 TeV by the D0 collaboration during 1992-96. No deviation from standard model expectations is observed. We use the data to set limits on the energy scale of quark-electron compositeness with common constituents. The 95% confidence level lower limits on the compositeness scale vary between 3.3 TeV and 6.1 TeV depending on the assumed form of the effective contact interaction.

1 data table match query

Dielectron production cross section.


Search for first generation scalar leptoquark pairs in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 80 (1998) 2051-2056, 1998.
Inspire Record 450538 DOI 10.17182/hepdata.42159

We have searched for first generation scalar leptoquark (LQ) pairs in the enu+jets channel using ppbar collider data (integrated luminosity= 115 pb^-1) collected by the DZero experiment at the Fermilab Tevatron during 1992-96. The analysis yields no candidate events. We combine the results with those from the ee+jets and nunu+jets channels to obtain 95% confidence level (CL) upper limits on the LQ pair production cross section as a function of mass and of beta, the branching fraction to a charged lepton. Comparing with the next-to-leading order theory, we set 95% CL lower limits on the LQ mass of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively.

1 data table match query

The cross section values are extracted with the assumption that BR(LQ --> EQUARK) = 1/2.


J / psi production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 370 (1996) 239-248, 1996.
Inspire Record 415417 DOI 10.17182/hepdata.42319

We have studied J ψ production in p p collisions at s = 1.8 TeV with the DØ detector at Fermilab using μ + μ − data. We have measured the inclusive J ψ production cross section as a function of J ψ transverse momentum, p T . For the kinematic range p T > 8 GeV/ c and |η| < 0.6 we obtain σ(p p → J ψ + X) · Br ( J ψ → μ + μ − ) = 2.08 ± 0.17( stat) ± 0.46(syst) nb. Using the muon impact parameter we have estimated the fraction of J ψ mesons coming from B meson decays to be f b = 0.35 ± 0.09(stat)±0.10(syst) and inferred the inclusive b production cross section. From the information on the event topology the fraction of nonisolated J ψ events has been measured to be f nonisol = 0.64 ± 0.08(stat)±0.06(syst). We have also obtained the fraction of J ψ events resulting from radiative decays of χ c states, f χ = 0.32 ± 0.07(stat)±0.07(syst). We discuss the implications of our measurements for charmonium production processes.

5 data tables match query

No description provided.

No description provided.

Integrated b-quark production cross section.

More…

Search for additional neutral gauge bosons

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 385 (1996) 471-478, 1996.
Inspire Record 421554 DOI 10.17182/hepdata.42253

We have searched for a heavy neutral gauge boson, Z ′, using the decay channel Z ′ → ee . The data were collected with the DØ detector at the Fermilab Tevatron during the 1992–1993 p p collider run at s =1.8 TeV from an integrated luminosity of 15±1 pb −1 . Limits are set on the cross section times brancing ratio for the process p p → Z′ → ee as a function of the Z ′ mass. We exclude the existence of a Z ′ of mass less than 490 GeV/c 2 , assuming a Z ′ with the same coupling strengths to quarks and leptons as the standard model Z boson.

1 data table match query

No description provided.


Second generation leptoquark search in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3618-3623, 1995.
Inspire Record 397099 DOI 10.17182/hepdata.42373

We report on a search for second generation leptoquarks with the D\O\ detector at the Fermilab Tevatron $p\overline{p}$ collider at $\sqrt{s}$ = 1.8 TeV. This search is based on 12.7 pb$~{-1}$ of data. Second generation leptoquarks are assumed to be produced in pairs and to decay into a muon and quark with branching ratio $\beta$ or to neutrino and quark with branching ratio $(1-\beta)$. We obtain cross section times branching ratio limits as a function of leptoquark mass and set a lower limit on the leptoquark mass of 111 GeV/c$~{2}$ for $\beta = 1 $ and 89 GeV/c$~{2}$ for $\beta = 0.5 $ at the 95\%\ confidence level.

1 data table match query

The cross section times branching ratios.


W and Z boson production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 1456-1461, 1995.
Inspire Record 395459 DOI 10.17182/hepdata.42368

The inclusive cross sections times leptonic branching ratios for W and Z boson production in PbarP collisions at Sqrt(s)=1.8 TeV were measured using the D0 detector at the Fermilab Tevatron collider: Sigma_W*B(W->e, nu) = 2.36 +/- 0.07 +/- 0.13 nb, Sigma_W*B(W->mu,nu) = 2.09 +/- 0.23 +/- 0.11 nb, Sigma_Z*B(Z-> e, e) = 0.218 +/- 0.011 +/- 0.012 nb, Sigma_Z*B(Z->mu,mu) = 0.178 +/- 0.030 +/- 0.009 nb. The first error is the combined statistical and systematic uncertainty, and the second reflects the uncertainty in the luminosity. For the combined electron and muon analyses we find: [Sigma_W*B(W->l,nu)]/[Sigma_Z*B(Z->l,l)] = 10.90 +/- 0.49. Assuming Standard Model couplings, this result is used to determine the width of the W boson: Gamma(W) = 2.044 +/- 0.093 GeV.

1 data table match query

The second DSYS error is due to luminosity.


Top quark search with the D\O\ 1992 - 1993 data sample

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 52 (1995) 4877-4919, 1995.
Inspire Record 398425 DOI 10.17182/hepdata.42468

We present results on the search for the top quark in pp¯ collisions at √s =1.8 TeV with an integrated luminosity of 13.5±1.6 pb−1. We have considered tt¯ production in the standard model using electron and muon dilepton decay channels (tt¯→eμ+jets, ee+jets, and μμ+jets) and single-lepton decay channels (tt¯→e+jets and μ+jets) with and without tagging of b quark jets. An analysis of these data optimized for top quark masses below 140 GeV/c2 gives a lower top quark mass limit of 128 GeV/c2. An analysis optimized for higher top quark masses yields 9 events with an expected background of 3.8±0.9. If we assume that the excess is due to tt¯ production, and assuming a top quark mass of 180 GeV/c2, we obtain a cross section of 8.2±5.1 pb.

1 data table match query

No description provided.


Observation of the top quark

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 74 (1995) 2632-2637, 1995.
Inspire Record 393099 DOI 10.17182/hepdata.42452

The DO collaboration reports on a search for the Standard Model top quark in pbar-p collisions at Sqrt(s)=1.8TeV at the Fermilab Tevatron, with an integrated luminosity of approximately 50pb-1. We have searched for t-tbar production in the dilepton and single-lepton decay channels, with and without tagging of b-quark jets. We observed 17 events with an expected background of 3.8+/-0.6 events. The probability for an upward fluctuation of the background to produce the observed signal is 2.0E-6 (equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent with top quark decay. We conclude that we have observed the top quark and measure its mass to be 199~+19_21 (stat.)+/- 22 (syst.)GeV/c**2 and its production cross section to be 6.4 +/- 2.2 pb.

1 data table match query

Cross section refers to top quark mass equal 199. (+19, -21, +- 22) GeV.


Search for W boson pair production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
FERMILAB-CONF-95-242-E, 1995.
Inspire Record 398747 DOI 10.17182/hepdata.43019

None

1 data table match query

Upper limit at the 95% C.L.