Measurement of forward neutral pion transverse momentum spectra for $\sqrt{s}$ = 7TeV proton-proton collisions at LHC

The LHCf collaboration Adriani, O. ; Bonechi, L. ; Bongi, M. ; et al.
Phys.Rev.D 86 (2012) 092001, 2012.
Inspire Record 1115479 DOI 10.17182/hepdata.59925

The inclusive production rate of neutral pions in the rapidity range greater than $y=8.9$ has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC $\sqrt{s}=7$\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.

6 data tables match query

Production rate for PI0 production in the rapidity range 8.9-9.0.

Production rate for PI0 production in the rapidity range 9.0-9.2.

Production rate for PI0 production in the rapidity range 9.2-9.4.

More…

Transverse momentum distribution and nuclear modification factor of forward neutral pion in proton--lead collisions at $\sqrt{s_{NN}} = 5.02$TeV

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Rev.C 89 (2014) 065209, 2014.
Inspire Record 1287922 DOI 10.17182/hepdata.64158

The transverse momentum ($p_\text{T}$) distribution for inclusive neutral pions in the very forward rapidity region has been measured, with the Large Hadron Collider forward detector (LHCf), in proton--lead collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_{NN}} = 5.02$TeV at the LHC. The $p_\text{T}$ spectra obtained in the rapidity range $-11.0 < y_\text{lab} < -8.9$ and $0 < p_\text{T} < 0.6$GeV (in the detector reference frame) show a strong suppression of the production of neutral pions after taking into account ultra-peripheral collisions. This leads to a nuclear modification factor value, relative to the interpolated $p_\text{T}$ spectra in proton-proton collisions at $\sqrt{s} = 5.02$TeV, of about 0.1--0.4. This value is compared with the predictions of several hadronic interaction Monte Carlo simulations.

6 data tables match query

Production rate for PI0 production in the rapidity range -8.9 to -9.0.

Production rate for PI0 production in the rapidity range -9.0 to -9.2.

Production rate for PI0 production in the rapidity range -9.2 to -9.4.

More…

Measurement of very forward neutron energy spectra for 7 TeV proton--proton collisions at the Large Hadron Collider

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Lett.B 750 (2015) 360-366, 2015.
Inspire Record 1351909 DOI 10.17182/hepdata.73320

The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However no model perfectly explains the experimental results in the whole pseudo-rapidity range. The experimental data indicate the most abundant neutron production rate relative to the photon production, which does not agree with predictions of the models.

1 data table match query

Differential neutron production rate d$\sigma_{n}$/dE [mb/GeV] for each rapidity range.


Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Rev.D 94 (2016) 032007, 2016.
Inspire Record 1385877 DOI 10.17182/hepdata.74066

The differential cross sections for inclusive neutral pions as a function of transverse and longitudinal momentum in the very forward rapidity region have been measured at the Large Hadron Collider (LHC) with the Large Hadron Collider forward detector (LHCf) in proton-proton collisions at $\sqrt{s}=$ 2.76 and 7 TeV and in proton-lead collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_\text{NN}}=$ 5.02 TeV. Such differential cross sections in proton-proton collisions are compatible with the hypotheses of limiting fragmentation and Feynman scaling. Comparing proton-proton with proton-lead collisions, we find a sizable suppression of the production of neutral pions in the differential cross sections after subtraction of ultra-peripheral proton-lead collisions. This suppression corresponds to the nuclear modification factor value of about 0.1-0.3. The experimental measurements presented in this paper provide a benchmark for the hadronic interaction Monte Carlo simulation codes that are used for the simulation of cosmic ray air showers.

20 data tables match query

The average $\pi^{0}$ transverse momenta for the rapidity range $8.8<y<10.6$ in $p+p$ collisions at $\sqrt{s}=2.76$ and 7 TeV and for the rapidity range $-8.8>y_\rm{lab}>-10.6$ in $p+\rm{Pb}$ collisions at $\sqrt{s_\rm{NN}}=5.02$ TeV. The rapidity values for $p+\rm{Pb}$ collisions are in the detector reference frame and must be multiplied by -1.

Production rate for the $\pi^{0}$ production in the rapidity range $8.8 < y < 9.0$ in $p+p$ collisions and in the rapidity range $-8.8 > y_\rm{lab} > -9.0$ in $p+\rm{Pb}$ collisions.

Production rate for the $\pi^{0}$ production in the rapidity range $9.0 < y < 9.2$ in $p+p$ collisions and in the rapidity range $-9.0 > y_\rm{lab} > -9.2$ in $p+\rm{Pb}$ collisions.

More…

Measurement of inclusive forward neutron production cross section in proton-proton collisions at $\mathrm{\sqrt{s} = 13~TeV}$ with the LHCf Arm2 detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
JHEP 11 (2018) 073, 2018.
Inspire Record 1692008 DOI 10.17182/hepdata.87099

In this paper, we report the measurement relative to the production of forward neutrons in proton-proton collisions at $\mathrm{\sqrt{s} = 13~TeV}$ obtained using the LHCf Arm2 detector at the Large Hadron Collider. The results for the inclusive differential production cross section are presented as a function of energy in three different pseudorapidity regions: $\eta > 10.76$, $8.99 < \eta < 9.22$ and $8.81 < \eta < 8.99$. The analysis was performed using a data set acquired in June 2015 that corresponds to an integrated luminosity of $\mathrm{0.194~nb^{-1}}$. The measurements were compared with the predictions of several hadronic interaction models used to simulate air showers generated by Ultra High Energy Cosmic Rays. None of these generators showed good agreement with the data for all pseudorapidity intervals. For $\eta > 10.76$, no model is able to reproduce the observed peak structure at around $\mathrm{5~TeV}$ and all models underestimate the total production cross section: among them, QGSJET II-04 shows the smallest deficit with respect to data for the whole energy range. For $8.99 < \eta < 9.22$ and $8.81 < \eta < 8.99$, the models having the best overall agreement with data are SIBYLL 2.3 and EPOS-LHC, respectively: in particular, in both regions SIBYLL 2.3 is able to reproduce the observed peak structure at around $\mathrm{1.5-2.5~TeV}$.

3 data tables match query

Inclusive neutron (and antineutron) production cross section in $\eta > 10.76$

Inclusive neutron (and antineutron) production cross section in $8.99 < \eta < 9.22$

Inclusive neutron (and antineutron) production cross section in $8.81 < \eta < 8.99$


Measurement of forward photon production cross-section in proton–proton collisions at $\sqrt{s}$ = 13 TeV with the LHCf detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Lett.B 780 (2018) 233-239, 2018.
Inspire Record 1518782 DOI 10.17182/hepdata.86566

In this paper, we report the production cross-section of forward photons in the pseudorapidity regions of $\eta\,&gt;\,10.94$ and $8.99\,&gt;\,\eta\,&gt;\,8.81$, measured by the LHCf experiment with proton--proton collisions at $\sqrt{s}$ = 13 TeV. The results from the analysis of 0.191 $\mathrm{nb^{-1}}$ of data obtained in June 2015 are compared to the predictions of several hadronic interaction models that are used in air-shower simulations for ultra-high-energy cosmic rays. Although none of the models agree perfectly with the data, EPOS-LHC shows the best agreement with the experimental data among the models.

2 data tables match query

Inclusive photon production cross section in $\eta > 10.94$

Inclusive photon production cross section in $8.81<\eta<8.99$


Measurement of energy flow, cross section and average inelasticity of forward neutrons produced in $\mathrm{\sqrt{s} = 13 TeV}$ proton-proton collisions with the LHCf Arm2 detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
JHEP 07 (2020) 016, 2020.
Inspire Record 1783943 DOI 10.17182/hepdata.130268

In this paper, we report the measurement of the energy flow, the cross section and the average inelasticity of forward neutrons (+ antineutrons) produced in $\sqrt{s} = 13$ TeV proton-proton collisions. These quantities are obtained from the inclusive differential production cross section, measured using the LHCf Arm2 detector at the CERN Large Hadron Collider. The measurements are performed in six pseudorapidity regions: three of them ($\eta > 10.75$, $8.99 < \eta < 9.21$ and $8.80 < \eta < 8.99$), albeit with smaller acceptance and larger uncertainties, were already published in a previous work, whereas the remaining three ($10.06 < \eta < 10.75$, $9.65 < \eta < 10.06$ and $8.65 < \eta < 8.80$) are presented here for the first time. The analysis was carried out using a data set acquired in June 2015 with a corresponding integrated luminosity of $\mathrm{0.194~nb^{-1}}$. Comparing the experimental measurements with the expectations of several hadronic interaction models used to simulate cosmic ray air showers, none of these generators resulted to have a satisfactory agreement in all the phase space selected for the analysis. The inclusive differential production cross section for $\eta > 10.75$ is not reproduced by any model, whereas the results still indicate a significant but less serious deviation at lower pseudorapidities. Depending on the pseudorapidity region, the generators showing the best overall agreement with data are either SIBYLL 2.3 or EPOS-LHC. Furthermore, apart from the most forward region, the derived energy flow and cross section distributions are best reproduced by EPOS-LHC. Finally, even if none of the models describe the elasticity distribution in a satisfactory way, the extracted average inelasticity is consistent with the QGSJET II-04 value, while most of the other generators give values that lie just outside the experimental uncertainties.

9 data tables match query

Neutron (and antineutron) inclusive differential production cross section in $\eta > 10.75$

Neutron (and antineutron) inclusive differential production cross section in $10.06 < \eta < 10.75$

Neutron (and antineutron) inclusive differential production cross section in $9.65 < \eta < 10.06$

More…

First measurement of sigma (p anti-p ---> Z) . Br (Z ---> tau tau) at s**(1/2) = 1.96- TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 71 (2005) 072004, 2005.
Inspire Record 666357 DOI 10.17182/hepdata.50921

We present a measurement of the cross section for $Z$ production times the branching fraction to $\tau$ leptons, $\sigma \cdot$Br$(Z\to \tau^+ \tau^-)$, in $p \bar p$ collisions at $\sqrt{s}=$1.96 TeV in the channel in which one $\tau$ decays into $\mu \nu_{\mu} \nu_{\tau}$, and the other into $\rm {hadrons} + \nu_{\tau}$ or $e \nu_e \nu_{\tau}$. The data sample corresponds to an integrated luminosity of 226 pb$^{-1}$ collected with the D{\O}detector at the Fermilab Tevatron collider. The final sample contains 2008 candidate events with an estimated background of 55%. From this we obtain $\sigma \cdot$Br$(Z \to \tau^+ \tau^-)=237 \pm 15$(stat)$\pm 18$(sys)$ \pm 15$(lum) pb, in agreement with the standard model prediction.

1 data table match query

Measured cross section times branching ratio.


Measurement of inclusive differential cross sections for Upsilon(1S) production in p anti-p collisions at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 94 (2005) 232001, 2005.
Inspire Record 676877 DOI 10.17182/hepdata.51525

We present measurements of the inclusive production cross sections of the Upsilon(1S) bottomonium state in ppbar collisions at sqrt(s) = 1.96 TeV. Using the Upsilon(1S) to mu+mu- decay mode for a data sample of 159 +- 10 pb^-1 collected by the D0 detector at the Fermilab Tevatron collider, we determine the differential cross sections as a function of the Upsilon(1S) transverse momentum for three ranges of the Upsilon(1S) rapidity: 0 < |y| < 0.6, 0.6 < |y| < 1.2, and 1.2 < |y| < 1.8.

2 data tables match query

Cross section per unit of rapidity times branching ratio to MU+ MU-. Systematic (DSYS) error does not include the 6.1 PCT uncertainty on the luminosity.

Normalized differential cross section for UPSI(1S) production.. Errors contain statistical and systematics (excluding luminosity error).


Measurement of the t anti-t production cross section in p anti-p collisions at s**(1/2) = 1.96-TeV using lepton + jets events with lifetime b-tagging

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 626 (2005) 35-44, 2005.
Inspire Record 681605 DOI 10.17182/hepdata.63680

We present a measurement of the top quark pair ($t\bar{t}$) production cross section ($\sigma_{t\bar{t}}$) in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using 230 pb$^{-1}$ of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the $t\bar{t}$ purity of the selected sample. For a top quark mass of 175 GeV, we measure $\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.)$ pb, in agreement with the standard model expectation.

1 data table match query

TTBAR production cross section. Error contains statistical and systematics (excluding the luminosity uncertainty).


Measurement of the photon$+b$-jet production differential cross section in $p\bar{p}$ collisions at $\sqrt{s}=1.96~\TeV$

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Acharya, B.S. ; et al.
Phys.Lett.B 714 (2012) 32-39, 2012.
Inspire Record 1095100 DOI 10.17182/hepdata.61739

We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.

2 data tables match query

The differential cross section as a function of PT for the production of GAMMA + B-JET in the photon |rapidity/ region < 1.0.

The differential cross section as a function of PT for the production of GAMMA + B-JET in the photon |rapidity| region 1.5-2.5.


Measurement of the t anti-t production cross section in p anti-p collisions at s**(1/2) = 1.96 = TeV using kinematic characteristics of lepton + jets events

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 626 (2005) 45-54, 2005.
Inspire Record 681233 DOI 10.17182/hepdata.27001

We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.

1 data table match query

TTBAR production cross section from the combined electron+jet and muon+jet channels.


Measurement of the angular distribution of electrons from W ---> e neutrino decays observed in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 63 (2001) 072001, 2001.
Inspire Record 533572 DOI 10.17182/hepdata.41717

We present the first measurement of the electron angular distribution parameter alpha_2 in W to e nu events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the D0 detector during the 1994--1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1 +/- alpha_1 cos theta* + alpha_2 cos^2 theta*), where theta* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters alpha_1 and alpha_2 become functions of p_T^W, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement.

1 data table match query

Angular distributions of the emitted charged lepton is fitted to the formula d(sig)/d(pt**2)/dy/d(cos(theta*)) = const*(1 +- alpha_1*cos(theta*) + alpha_2*(cos(theta*))**2). The angle theta* is measured in the Collins-Soper frame. alpha_1 velues are calculated based on the measured PT(W) of each event. Possible variations of alpha_1 are treated as a source of systematic uncertainty.


Search for top squark pair production in the dielectron channel

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 57 (1998) 589-593, 1998.
Inspire Record 427311 DOI 10.17182/hepdata.41662

This report describes the first search for top squark pair production in the channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using 74.9 +- 8.9 pb~-1 of data collected using the D0 detector. A 95% confidence level upper limit on sigma*B is presented. The limit is above the theoretical expectation for sigma*B for this process, but does show the sensitivity of the current D0 data set to a particular topology for new physics.

1 data table match query

Data are extracted from the figure. Sigma*Br.


Measurement of the high-mass Drell-Yan cross section and limits on quark-electron compositeness scales

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 4769-4774, 1999.
Inspire Record 480590 DOI 10.17182/hepdata.42142

We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using 120/pb of data collected in pbar-p collisions at sqrt(s) = 1.8 TeV by the D0 collaboration during 1992-96. No deviation from standard model expectations is observed. We use the data to set limits on the energy scale of quark-electron compositeness with common constituents. The 95% confidence level lower limits on the compositeness scale vary between 3.3 TeV and 6.1 TeV depending on the assumed form of the effective contact interaction.

1 data table match query

Dielectron production cross section.


Measurement of the top quark pair production cross section in the all-jets decay channel

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 83 (1999) 1908-1913, 1999.
Inspire Record 494099 DOI 10.17182/hepdata.42119

We present a measurement of tbar-t production using multijet final states in pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity of 110.3 pb(-1). The analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on the tbar-t production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with previous D0 measurements, where one or both of the W bosons decay leptonically, gives a tbar-t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.

1 data table match query

No description provided.


Measurement of the top quark pair production cross-section in p anti-p collisions using multijet final states

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 012001, 1999.
Inspire Record 475565 DOI 10.17182/hepdata.42156

We have studied tbar-t production using multijet final states in pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity of 110.3 pb(-1). Each of the top quarks with these final states decays exclusively to a bottom quark and a W boson, with the W bosons decaying into quark-antiquark pairs. The analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on the tbar-t production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with previous D0 measurements, where one or both of the W bosons decay leptonically, gives a tbar t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.

1 data table match query

The second value is the combination of the data reported here combined withthe previous result of D0 reported in PRL 79(1997)1203.


Search for bottom squarks in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 031101, 1999.
Inspire Record 496902 DOI 10.17182/hepdata.42120

We report on a search for bottom squarks produced in pbarp collisions at sqrt(s) = 1.8 TeV using the D0 detector at Fermilab. Bottom squarks are assumed to be produced in pairs and to decay to the lightest supersymmetric particle (LSP) and a b quark with branching fraction of 100%. The LSP is assumed to be the lightest neutralino and stable. We set limits on the production cross section as a function of bottom squark mass and LSP mass.

1 data table match query

It is assumed that the S-BQ decays intp BQ and LSP with a branching fraction of 100%.


A search for heavy pointlike Dirac monopoles

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 81 (1998) 524-529, 1998.
Inspire Record 468445 DOI 10.17182/hepdata.42158

We have searched for central production of a pair of photons with high transverse energies in $p\bar p$ collisions at $\sqrt{s} = 1.8$ TeV using $70 pb^{-1}$ of data collected with the D\O detector at the Fermilab Tevatron in 1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of $610, 870, or 1580 GeV/c^2$ on the mass of a spin 0, 1/2, or 1 Dirac monopole.

1 data table match query

No description provided.


Z gamma production in anti-p p collisions S**(1/2) = 1.8-TeV and limits on anomalous Z Z gamma and Z gamma gamma couplings

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 57 (1998) R3817-R3821, 1998.
Inspire Record 465977 DOI 10.17182/hepdata.42169

We present a study of Z +gamma + X production in p-bar p collisions at sqrt{S}=1.8 TeV from 97 (87) pb^{-1} of data collected in the eegamma (mumugamma) decay channel with the D0 detector at Fermilab. The event yield and kinematic characteristics are consistent with the Standard Model predictions. We obtain limits on anomalous ZZgamma and Zgammagamma couplings for form factor scales Lambda = 500 GeV and Lambda = 750 GeV. Combining this analysis with our previous results yields 95% CL limits |h{Z}_{30}| < 0.36, |h{Z}_{40}| < 0.05, |h{gamma}_{30}| < 0.37, and |h{gamma}_{40}| < 0.05 for a form factor scale Lambda=750 GeV.

1 data table match query

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.


The b anti-b production cross-section and angular correlations in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Lett.B 487 (2000) 264-272, 2000.
Inspire Record 499943 DOI 10.17182/hepdata.42088

We present measurements of the b-bbar production cross section and angular correlations using the D0 detector at the Fermilab Tevatron p-pbar Collider operating at sqrt(s) = 1.8 TeV. The b quark production cross section for |y(b)|<1.0 and p_T(b)>6 GeV/c is extracted from single muon and dimuon data samples. The results agree in shape with the next-to-leading order QCD calculation of heavy flavor production but are greater than the central values of these predictions. The angular correlations between b and bbar quarks, measured from the azimuthal opening angle between their decay muons, also agree in shape with the next-to-leading order QCD prediction.

3 data tables match query

No description provided.

The errors are combinations of statistical and systematic uncertainties.

The distribution of MU+ MU- azimuthal angle difference.


Studies of W W and W Z production and limits on anomalous W W gamma and W W Z couplings

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 072002, 1999.
Inspire Record 499282 DOI 10.17182/hepdata.42124

Evidence of anomalous WW and WZ production was sought in pbar{p} collisions at a center-of-mass energy of sqrt(s) = 1.8 TeV. The final states $WW (WZ) to mu-nu-jet-jet + X, WZ to mu-nu-e-e + X and WZ to e-nu-e-e + X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWgamma and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Lambda=2 TeV are -0.25 LE Delta-kappa LE 0.39 (lambda=0) and -0.18 LE lambda LE 0.19 (Delta \kappa = 0), assuming the WWgamma couplings are equal to the WWZ couplings.

2 data tables match query

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n. KAPPA_GZ means KAPPA_GAMMA = KAPPA_Z. LAMBDA_GZ means LAMBDA_GAMMA = LAMBDA_Z.

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n.


Search for first generation scalar leptoquark pairs in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 80 (1998) 2051-2056, 1998.
Inspire Record 450538 DOI 10.17182/hepdata.42159

We have searched for first generation scalar leptoquark (LQ) pairs in the enu+jets channel using ppbar collider data (integrated luminosity= 115 pb^-1) collected by the DZero experiment at the Fermilab Tevatron during 1992-96. The analysis yields no candidate events. We combine the results with those from the ee+jets and nunu+jets channels to obtain 95% confidence level (CL) upper limits on the LQ pair production cross section as a function of mass and of beta, the branching fraction to a charged lepton. Comparing with the next-to-leading order theory, we set 95% CL lower limits on the LQ mass of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively.

1 data table match query

The cross section values are extracted with the assumption that BR(LQ --> EQUARK) = 1/2.


The Inclusive jet cross-section in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 2451-2456, 1999.
Inspire Record 473457 DOI 10.17182/hepdata.42154

We have made a precise measurement of the central inclusive jet cross section at sqrt(s) = 1.8 TeV. The measurement is based on an integrated luminosity of 92 pb-1 collected at the Fermilab Tevatron pbar-p Collider with the D-Zero detector. The cross section, reported as a function of jet transverse energy (ET >= 60 GeV) in the pseudorapidity interval |eta| <= 0.5, is in good agreement with predictions from next-to-leading order quantum chromodynamics.

2 data tables match query

Inclusive cross section for ABS(ETARAP)<0.5. The quoted systematic (DSYS) errors do not include the luminosity uncertainty of 6.1 PCT.

Inclusive cross section for 0.1<=ABS(ETARAP)<=0.7. Data are taken from the AIP E-PAPS ftp site shown above. The quoted (DSYS) errors are the total systematic errors including the luminosity uncertainty.


Extraction of the width of the W boson from measurements of sigma(p anti-p ---> W + X) x B(W ---> e neutrino) and sigma(p anti-p ---> Z + X) x B(Z ---> e e) and their ratio

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 61 (2000) 072001, 2000.
Inspire Record 501703 DOI 10.17182/hepdata.42085

We report on measurements of inclusive cross sections times branching fractions into electrons for W and Z bosons produced in ppbar collisions at sqrts=1.8 TeV.From an integrated luminosity of 84.5 inverse pb recorded in 1994--1995 using the D0 detector at the Fermilab Tevatron, we determine sigma(ppbar->W+X)B(W->e nu) = 2310 +- 10(stat) +- 50(syst) +- 100(lum) pb and sigma(ppbar->Z+X)B(Z->e e) = 221 +- 3(stat) +- 4(syst) +- 10(lum) pb. From these, we derive their Ratio R = 10.43 +- 0.15(stat) +- 0.20(syst) +- 0.10(NLO), B(W->e nu) = 0.1066 +- 0.0015(stat) +- 0.0021(syst) +- 0.0011(theory)+- 0.0011(NLO), and Gamma_W = 2.130 +- 0.030(stat) +- 0.041(syst) +- 0.022(theory) +- 0.021(NLO) GeV. We use the latter to set a 95% confidence level upper limit on the partial decay width of the W boson into non-standard model final states, Gamma_W^{inv}, of 0.168 GeV. Combining these results with those from the 1992--1993 data gives R = 10.54 +- 0.24, Gamma_W = 2.107 +- 0.054 GeV, and a 95% C.L. upper limit on Gamma_W^{inv} of 0.132 GeV. Using a sample with a luminosity of 505 inverse nb taken at sqrts=630 GeV, we measure sigma(ppbar->W+X)B(W->e nu) = 658 +- 67 pb.

2 data tables match query

Cross sections times branching ratios for W+- and Z0 production. The second DSYS error is due to the uncertainty in the luminosity.

Ratio of W to Z0 cross sections. The second systematic error is due to the uncertainty in the NLO electroweak radiative corrections.


Direct measurement of the top quark mass at D\O

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, B.S. ; et al.
Phys.Rev.D 58 (1998) 052001, 1998.
Inspire Record 466578 DOI 10.17182/hepdata.42170

We determine the top quark mass m_t using t-tbar pairs produced in the D0 detector by \sqrt{s} = 1.8 TeV p-pbar collisions in a 125 pb^-1 exposure at the Fermilab Tevatron. We make a two constraint fit to m_t in t-tbar -> b W^+bbar W^- final states with one W boson decaying to q-qbar and the other to e-nu or mu-nu. Likelihood fits to the data yield m_t(l+jets) = 173.3 +- 5.6 (stat) +- 5.5 (syst) GeV/c^2. When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain m_t = 172.1 +- 5.2 (stat) +- 4.9 (syst) GeV/c^2. An alternate analysis, using three constraint fits to fixed top quark masses, gives m_t(l+jets) = 176.0 +- 7.9 (stat) +- 4.8 (syst) GeV/C^2, consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented.

1 data table match query

No description provided.


Measurement of W and Z boson production cross-sections

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 052003, 1999.
Inspire Record 494696 DOI 10.17182/hepdata.42125

DO has measured the inclusive production cross section of W and Z bosons in a sample of 13 pb$^{-1}$ of data collected at the Fermilab Tevatron. The cross sections, multiplied by their leptonic branching fractions, for production in pbar-p collisions at sqrt{s}=1.8 TeV are sigma_W*B(W->e nu) = 2.36+-0.02+-0.08+-0.13 nb, sigma_W*B(W->mu nu) = 2.09+-0.06+-0.22+-0.11 nb, sigma_Z*B(Z->e+ e-) = 0.218+-0.008+-0.008+-0.012 nb, and sigma_Z*B(Z->mu+ mu-) = 0.178+-0.022+-0.021+-0.009 nb, where the first uncertainty is statistical and the second systematic; the third reflects the uncertainty in the integrated luminosity. For the combined electron and muon analyses, we find sigma_W*B(W->l mu)/sigma_Z*B(Z->l+ l-) = 10.90+-0.52. Assuming standard model couplings, we use this result to determine the width of the W boson, and obtain Gamma(W) = 2.044+-0.097 GeV.

2 data tables match query

No description provided.

Combined electron and muon analysis.


Measurement of the inclusive differential cross-section for Z bosons as a function of transverse momentum in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 61 (2000) 032004, 2000.
Inspire Record 503361 DOI 10.17182/hepdata.42104

We present a measurement of the differential cross section as a function of transverse momentum of the Z boson in ppbar collisions at sqrt{s}=1.8 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider during 1994--1996. We find good agreement between our data and the NNLO resummation prediction and extract values of the non-perturbative parameters for the resummed prediction from a fit to the differential cross section.

1 data table match query

Differential cross section in the electron channel. The errors contain both statistical and systematic error excluding the overall normalization error.


Measurement of the shape of the transverse momentum distribution of W bosons produced in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 80 (1998) 5498-5503, 1998.
Inspire Record 467749 DOI 10.17182/hepdata.42166

The shape of the transverse momentum distribution of W bosons (p_T(W)) produced in pbarp collisions at sqrt(s)= 1.8 TeV is measured with the DO detector at Fermilab. The result is compared to QCD perturbative and resummation calculations over the p_T(W) range from 0-200 GeV/c. The shape of the distribution is consistent with the theoretical prediction.

1 data table match query

The first error is statistical, the first systematic (DSYS) error is the uncertainty in the background and efficiencies, the second is the systematic errorin the detector modelling.


Small angle J / psi production in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 35-40, 1999.
Inspire Record 473954 DOI 10.17182/hepdata.42141

This paper presents the first measurement of the inclusive J/Psi production cross section in the forward pseudorapidity region 2.5<|eta|<3.7 in ppbar collisions at sqrt(s)=1.8TeV. The results are based on 9.8 pb-1 of data collected using the D0 detector at the Fermilab Tevatron Collider. The inclusive J/Psi cross section for transverse momenta between 1 and 16 GeV/c is compared with theoretical models of charmonium production.

1 data table match query

Only statistical errors are shown. Cross section tines branching ratio.


Measurement of the WW production cross section in p anti-p collisions at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 94 (2005) 151801, 2005.
Inspire Record 1650063 DOI 10.17182/hepdata.42037

A change in estimated integrated luminosity (from 226 pb$^{-1} to 257 pb$^{-1}$ leads to a corrected value for ${\sigma (p \bar p \to Z) \cdot}$Br${(Z \to \tau \tau)}$ of $209\pm13(stat.)\pm16(syst.)\pm13(lum) pb.

1 data table match query

Total cross section for W boson pair production. The second systematic (DSYS) error is due to the uncertainty in the luminosity.


Search for scalar leptoquark pairs decaying to electrons and jets in anti-p p collisions

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 79 (1997) 4321-4326, 1997.
Inspire Record 446155 DOI 10.17182/hepdata.42172

We have searched for the pair production of first generation scalar leptoquarks in the eejj channel using the full data set (123 pb-1) collected with the D0 detector at the Fermilab Tevatron during 1992--1996. We observe no candidates with an expected background of approximately 0.4 events. Comparing the experimental 95% confidence level upper limit to theoretical calculations of the cross section with the assumption of a 100% branching fraction to eq, we set a lower limit on the mass of a first generation scalar leptoquark of 225 GeV/c^2. The results of this analysis rule out the interpretation of the excess of high Q^2 events at HERA as leptoquarks which decay exclusively to eq.

1 data table match query

No description provided.


Probing hard color singlet exchange in p anti-p collisions at S**(1/2) = 630-GeV and 1800-GeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Lett.B 440 (1998) 189-202, 1998.
Inspire Record 476389 DOI 10.17182/hepdata.42131

We present results on dijet production via hard color-singlet exchange in proton-antiproton collisions at root-s = 630 GeV and 1800 GeV using the DZero detector. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, separation in pseudorapidity between the two highest transverse energy jets, and proton-antiproton center-of-mass energy. The results are consistent with a color-singlet fraction that increases with an increasing fraction of quark-initiated processes and inconsistent with two-gluon models for the hard color-singlet.

2 data tables match query

Colour-singlet fraction at 1.8 TeV.

Ratio of colour-singlet fractions between 630 and 1800 GeV.


The Dijet mass spectrum and a search for quark compositeness in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 2457-2462, 1999.
Inspire Record 473420 DOI 10.17182/hepdata.42143

Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we have measured the inclusive dijet mass spectrum in the central pseudorapidity region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| < 1.0). The order alpha_s^3 QCD predictions are in good agreement with the data and we rule out models of quark compositeness with a contact interaction scale < 2.4 TeV at the 95% confidence level.

2 data tables match query

Dijet cross section for ABS(ETARAP)<1.0.

Ratio of cross sections for ABS(ETARAP) < 0.5 / 0.5 < ABS(ETARAP) < 1.0.


Small angle muon and bottom quark production in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 84 (2000) 5478-5483, 2000.
Inspire Record 503949 DOI 10.17182/hepdata.42072

This Letter describes a measurement of the muon cross section originating from b quark decay in the forward rapidity range 2.4 < y(mu) < 3.2 in pbarp collisions at sqrt(s) = 1.8 TeV. The data used in this analysis were collected by the D0 experiment at the Fermilab Tevatron. We find that NLO QCD calculations underestimate b quark production by a factor of four in the forward rapidity region. A cross section measurement using muon+jet data has been included in this version of the paper.

3 data tables match query

The forward muon cross section (per unit rapidity).

The cross section for muons originating from b-quark decay.

Integrated cross sections for muons originating from b-quark decay. The statistical and systematic errors are added in quadrature.


Measurement of dijet angular distributions and search for quark compositeness

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 80 (1998) 666-671, 1998.
Inspire Record 445265 DOI 10.17182/hepdata.42185

We have measured the dijet angular distribution in $\sqrt{s}$=1.8 TeV $p\bar{p}$ collisions using the D0 detector. Order $\alpha^{3}_{s}$ QCD predictions are in good agreement with the data. At 95% confidence the data exclude models of quark compositeness in which the contact interaction scale is below 2 TeV.

1 data table match query

No description provided.


Search for anomalous W W and W Z production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 77 (1996) 3303-3308, 1996.
Inspire Record 419962 DOI 10.17182/hepdata.42290

We present results from a search for anomalous WW and WZ production in ppbar collisions at sqrt(s) = 1.8 TeV. We used ppbar->evjjX events observed during the 1992-1993 run of the Fermilab Tevatron collider, corresponding to an integrated luminosity of 13.7 +- 0.7 pb^-1. A fit to the transverse momentum spectrum of the W boson yields direct limits on the CP-conserving anomalous WWgamma and WWZ coupling parameters of -0.9 &lt; delta kappa &lt; 1.1 (with lambda = 0) and -0.6 &lt; lambda &lt; 0.7 (with delta kappa = 0) at the 95% confidence level, for a form factor scale Lambda = 1.5 TeV, assuming that the WWgamma and WWZ coupling parameters are equal.

1 data table match query

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.


Search for diphoton events with large missing transverse energy in p - anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 78 (1997) 2070-2074, 1997.
Inspire Record 427309 DOI 10.17182/hepdata.42245

A search for signals of new physics has been carried out in the channel p pbar -> gamma gamma + ETmiss. This signature is expected in various recently proposed supersymmetric (SUSY) models. We observe 842 events with two photons having transverse momentum ET(g) > 12 GeV and pseudorapidity |eta(g)| < 1.1. Of these, none have missing transverse energy (ETmiss) in excess of 25 GeV. The distribution of ETmiss is consistent with that of the expected background. We therefore set limits on production cross sections for selectron, sneutrino and neutralino pairs, decaying into photons. The limits range from about 400 fb to 1 pb depending on the sparticle masses. A general limit of 185 fb (95% C.L.) is set on sigma.B(pbar p -> gamma gamma ETmiss + X) where ET(g) > 12 GeV, |eta(g)| < 1.1, and ETmiss > 25 GeV.

1 data table match query

$INVISIBLE means ET(missing).


The Isolated photon cross-section in the central and forward rapidity regions in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 77 (1996) 5011-5015, 1996.
Inspire Record 417044 DOI 10.17182/hepdata.42312

A measurement of the cross section for production of single, isolated photons is reported for transverse energies in the range of 10-125 GeV, for two regions of pseudorapidity, |\eta|<0.9 and 1.6<|\eta|<2.5. The data represent 12.9 pb-1 of integrated luminosity accumulated in p-pbar collisions at sqrt{s} = 1.8 TeV and recorded with the D0 detector at the Fermilab Tevatron Collider.

2 data tables match query

Numerical values supplied by J. Womersley.

Numerical values supplied by J. Womersley.


J / psi production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 370 (1996) 239-248, 1996.
Inspire Record 415417 DOI 10.17182/hepdata.42319

We have studied J ψ production in p p collisions at s = 1.8 TeV with the DØ detector at Fermilab using μ + μ − data. We have measured the inclusive J ψ production cross section as a function of J ψ transverse momentum, p T . For the kinematic range p T > 8 GeV/ c and |η| < 0.6 we obtain σ(p p → J ψ + X) · Br ( J ψ → μ + μ − ) = 2.08 ± 0.17( stat) ± 0.46(syst) nb. Using the muon impact parameter we have estimated the fraction of J ψ mesons coming from B meson decays to be f b = 0.35 ± 0.09(stat)±0.10(syst) and inferred the inclusive b production cross section. From the information on the event topology the fraction of nonisolated J ψ events has been measured to be f nonisol = 0.64 ± 0.08(stat)±0.06(syst). We have also obtained the fraction of J ψ events resulting from radiative decays of χ c states, f χ = 0.32 ± 0.07(stat)±0.07(syst). We discuss the implications of our measurements for charmonium production processes.

5 data tables match query

No description provided.

No description provided.

Integrated b-quark production cross section.

More…

Measurement of the top quark pair production cross-section in p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 79 (1997) 1203-1208, 1997.
Inspire Record 442536 DOI 10.17182/hepdata.42194

We present a measurement of the ttbar production cross section in ppbar collisions at root(s) = 1.8TeV by the D0 experiment at the Fermilab Tevatron. The measurement is based on data from an integrated luminosity of approximately 125 pb~-1 accumulated during the 1992-1996 collider run. We observe 39 ttbar candidate events in the dilepton and lepton+jets decay channels with an expected background of 13.7+-2.2 events. For a top quark mass of 173.3GeV/c~2, we measure the ttbar production cross section to be 5.5+-1.8 pb.

1 data table match query

Different channels are used for evaluation of the cross section magnitudes. The last value is obtained from the previous one by adding the errors in quadrature.


Studies of gauge boson pair production and trilinear couplings

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 56 (1997) 6742-6778, 1997.
Inspire Record 441947 DOI 10.17182/hepdata.42213

The gauge boson pair production processes Wg, WW, WZ, and Zg were studied using pbarp collisions corresponding to an integrated luminosity of ~14 pb-1 at a center-of-mass energy of sqrt(s) = 1.8 TeV. Analysis of Wg prod with subsequent W boson decay to lv (l=e,mu) is reported, including a fit to the pT spectrum of the photons which leads to limits on anomalous WWg couplings. A search for WW prod with subsequent decay to l-lbar-v-vbar (l=e,mu) is presented leading to an upper limit on the WW prod cross section and limits on anomalous WWg and WWZ couplings. A search for high pT W bosons in WW and WZ prod is described, where one W boson decays to an ev and the second W boson or the Z boson decays to two jets. A maximum likelihood fit to the pT spectrum of W bosons resulted in limits on anomalous WWg and WWZ couplings. A combined fit to the three data sets which provided the tightest limits on anomalous WWg and WWZ couplings is also described. Limits on anomalous ZZg and Zgg couplings are presented from an analysis of the photon ET spectrum in Zg events in the decay channels (ee, mu-mu, and v-vbar) of the Z boson.

1 data table match query

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.


Search for additional neutral gauge bosons

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 385 (1996) 471-478, 1996.
Inspire Record 421554 DOI 10.17182/hepdata.42253

We have searched for a heavy neutral gauge boson, Z ′, using the decay channel Z ′ → ee . The data were collected with the DØ detector at the Fermilab Tevatron during the 1992–1993 p p collider run at s =1.8 TeV from an integrated luminosity of 15±1 pb −1 . Limits are set on the cross section times brancing ratio for the process p p → Z′ → ee as a function of the Z ′ mass. We exclude the existence of a Z ′ of mass less than 490 GeV/c 2 , assuming a Z ′ with the same coupling strengths to quarks and leptons as the standard model Z boson.

1 data table match query

No description provided.


Transverse energy distributions within jets in p anti-p collisions at S**(1/2) = 1.8-Tev

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 357 (1995) 500-508, 1995.
Inspire Record 398175 DOI 10.17182/hepdata.42372

The distribution of the transverse energy in jets has been measured in p p collisions at s =1.8 TeV TeV using the DØ detector at Fermilab. This measurement of the jet shape is made as a function of jet transverse energy in both the central and forward rapidity regions. Jets are shown to narrow both with increasing transverse energy and with increasing rapidity. Next-to-leading order partonic QCD calculations are compared to the data. Although the calculations qualitatively describe the data, they are shown to be very dependent on renormalization scale, parton clustering algorithm, and jet direction definition and they fail to describe the data in all regions consistently.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Study of the Z Z gamma and Z gamma gamma couplings in Z (neutrino neutrino) gamma production

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 78 (1997) 3640-3645, 1997.
Inspire Record 440634 DOI 10.17182/hepdata.42214

We have measured the ZZ-gamma and Z-gamma-gamma couplings by studying p-bar p -> (missing ET) gamma + X events at sqrt(s)=1.8 TeV with the D0 detector at the Fermilab Tevatron Collider. This first study of hadronic Z-gamma production in the neutrino decay channel gives the most stringent limits on anomalous couplings available. A fit to the transverse energy spectrum of the photon in the candidate event sample, based on a data set corresponding to an integrated luminosity of 13.1 pb~(-1), yields 95% CL limits on the anomalous CP-conserving ZZ-gamma couplings of |h~Z_(30)|<0.9, |h~Z_(40)|<0.21, for a form-factor scale Lambda = 500 GeV. Combining these results with our previous measurement using Z -> ee and mu-mu yields the limits:|h~Z_(30)|<0.8, |h~Z_(40)|<0.19 (Lambda = 500 GeV) and |h~Z_(30)|<0.4, |h~Z_(40)|<0.06 (Lambda = 750 GeV).

1 data table match query

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.. The data with Z --> lepton+ lepton- is taken from S.Abachi, PRL 75, 1028.


Limits on W W Z and W W gamma couplings from p anti-p ---> e neutrino jet jet X events at s**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 79 (1997) 1441-1446, 1997.
Inspire Record 443148 DOI 10.17182/hepdata.42199

We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb~(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also presented.

1 data table match query

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.


Search for heavy W boson in 1.8-TeV p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 358 (1995) 405-411, 1995.
Inspire Record 400396 DOI 10.17182/hepdata.42342

A search for a heavy charged gauge boson, W ′, using the decay channels W ′ → eν and W′ → τν → eνν ν is reported. The data used in the analysis were collected by the DØ experiment at the Fermilab Tevatron during the 1992-93 p p collider run from an integrated luminosity of 13.9 ± 0.8 pb −1 at s =1.8 TeV . Assuming that the neutrino from W ′ decay is stable and has a mass significantly less than m W ′ , an upper limit at the 95% confidence level is set on the cross section times branching ratio for p p → W′ → eν . A W ′ with the same couplings to quarks and leptons as the standard model W boson is excluded for m W ′ < 610 GeV/c 2 .

2 data tables match query

No description provided.

The W'+- is assumed has the couplings to quarks and leptons as the standard model W and neutrinos produced in WPRIME decay are stable and have a mass significantly less then M(W').


Second generation leptoquark search in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3618-3623, 1995.
Inspire Record 397099 DOI 10.17182/hepdata.42373

We report on a search for second generation leptoquarks with the D\O\ detector at the Fermilab Tevatron $p\overline{p}$ collider at $\sqrt{s}$ = 1.8 TeV. This search is based on 12.7 pb$~{-1}$ of data. Second generation leptoquarks are assumed to be produced in pairs and to decay into a muon and quark with branching ratio $\beta$ or to neutrino and quark with branching ratio $(1-\beta)$. We obtain cross section times branching ratio limits as a function of leptoquark mass and set a lower limit on the leptoquark mass of 111 GeV/c$~{2}$ for $\beta = 1 $ and 89 GeV/c$~{2}$ for $\beta = 0.5 $ at the 95\%\ confidence level.

1 data table match query

The cross section times branching ratios.


Search for a fourth generation charge -1/3 quark via flavor changing neutral current decay

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 78 (1997) 3818-3823, 1997.
Inspire Record 426498 DOI 10.17182/hepdata.42251

We report on a search for pair production of a fourth generation charge -1/3 quark (b') in pbar p collisions at sqrt(s) = 1.8 TeV at the Fermilab Tevatron using an integrated luminosity of 93 pb^-1. Both quarks are assumed to decay via flavor changing neutral currents (FCNC). The search uses the signatures gamma + 3 jets + mu-tag and 2 gamma + 2 jets. We see no significant excess of events over the expected background. We place an upper limit on the production cross section times branching fraction that is well below theoretical expectations for a b' quark decaying exclusively via FCNC for b' quark masses up to m(Z) + m(b).

3 data tables match query

Cross section times branching fraction for the gamma+3jets channel.

Cross section times branching fraction for the 2gamma+2jets channel.

No description provided.


Measurement of the Z Z gamma and Z gamma gamma couplings in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 1028, 1995.
Inspire Record 394245 DOI 10.17182/hepdata.42374

We have directly measured the ZZ-gamma and Z-gamma-gamma couplings by studying p pbar --> l+ l- gamma + X, (l = e, mu) events at the CM energy of 1.8$TeV with the D0 detector at the Fermilab Tevatron Collider. A fit to the transverse energy spectrum of the photon in the signal events, based on the data set corresponding to an integrated luminosity of 13.9 pb~-1 ($13.3 pb~-1) for the electron (muon) channel, yields the following 95% confidence level limits on the anomalous CP-conserving ZZ-gamma couplings: -1.9 < h~Z_30 < 1.8 (h~Z_40 = 0), and -0.5 < h~Z_40 < 0.5 (h~Z_30 = 0), for a form-factor scale Lambda = 500 GeV. Limits for the Z-gamma-gamma$ couplings and CP-violating couplings are also discussed.

1 data table match query

The anomalous CP-conserving Z Z GAMMA. CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.