Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

1 data table match query

dE_T/deta normalized by the number of participant pairs as a function of the number of participants.


Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 77 (2008) 024912, 2008.
Inspire Record 768530 DOI 10.17182/hepdata.57373

All of the experimental data points presented in the original paper are correct and unchanged (including statistical and systematic uncertainties). However, herein we correct a comparison between the experimental data and a theoretical picture, because we discovered a mistake in the code used. All of the most probable sigma_breakup values differ by less than 0.4 mb from those originally presented. However, the one standard deviation uncertainties (that include contributions from both the statistical and systematic uncertainties on the experimental data points) are approximately 30-60% larger than originally reported. We give a table of the new comparison results and corrected versions of Figs. 8-11 of the original paper and we note that no correction is needed for results from the data-driven method in Fig. 13.

1 data table match query

Breakup cross section of c-c_bar pairs inside cold nuclear matter for different ranges of rapidity.The breakup cross section is calculated with two models of shadowing for nuclear PDFs ; the EKS model and the NDSG model. The uncertainties given, containing statistical and systematical error, are corresponding to one standard deviation.


Measurement of $J/\psi$ at forward and backward rapidity in $p+p$, $p+A$l, $p+A$u, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 102 (2020) 014902, 2020.
Inspire Record 1762446 DOI 10.17182/hepdata.98626

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.

1 data table match query

J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.


Transverse momentum dependence of meson suppression in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 82 (2010) 011902, 2010.
Inspire Record 856259 DOI 10.17182/hepdata.106472

New measurements by the PHENIX experiment at RHIC for eta production at midrapidity as a function of transverse momentum (p_T) and collision centrality in sqrt(s_NN) = 200 GeV Au+Au and p+p collisions are presented. They indicate nuclear modification factors (R_AA) that are similar both in magnitude and trend to those found in earlier pi^0 measurements. Linear fits to R_AA in the 5--20 GeV/c p_T region show that the slope is consistent with zero within two standard deviations at all centralities although a slow rise cannot be excluded. Having different statistical and systematic uncertainties the pi^0 and eta measurements are complementary at high p_T/ thus, along with the extended p_T range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.

4 data tables match query

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 5% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 10% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 20% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.

More…

Measurement of two-particle correlations with respect to second- and third-order event planes in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 99 (2019) 054903, 2019.
Inspire Record 1658594 DOI 10.17182/hepdata.115992

We present measurements of azimuthal correlations of charged hadron pairs in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions after subtracting an underlying event using a model that includes higher-order azimuthal anisotropy $v_2$, $v_3$, and $v_4$. After subtraction, the away-side ($\Delta\phi\sim\pi)$ of the highest transverse-momentum trigger ($p_T>4$ GeV/$c$) correlations is suppressed compared to that of correlations measured in $p$$+$$p$ collisions. At the lowest associated particle $p_T$, the away-side shape and yield are modified. These observations are consistent with the scenario of radiative-jet energy loss. For the lowest-$p_T$ trigger correlations, an away-side yield exists and we explore the dependence of the shape of the away-side within the context of an underlying-event model. Correlations are also studied differentially versus event-plane angle $\Psi_n$. The angular correlations show an asymmetry when selecting the sign of the trigger-particle azimuthal angle with respect to the $\Psi_2$ event plane. This asymmetry and the measured suppression of the pair yield out of plane is consistent with a path-length-dependent energy loss. No $\Psi_3$ dependence can be resolved within experimental uncertainties.

1 data table match query

Per-trigger yields $Y(\Delta\phi)$ of dihadrons pairs measured in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$ after subtracting the underlying event model with several $p_T$ selections. Systematic uncertainties due to track matching are given.


Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}}=7.7$ to 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024901, 2016.
Inspire Record 1394433 DOI 10.17182/hepdata.96601

Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.

1 data table match query

Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV


Bose-Einstein correlations of charged pion pairs in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 93 (2004) 152302, 2004.
Inspire Record 642225 DOI 10.17182/hepdata.140436

Bose-Einstein correlations of identically charged pion pairs were measured by the PHENIX experiment at mid-rapidity in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. The Bertsch-Pratt radius parameters were determined as a function of the transverse momentum of the pair and as a function of the centrality of the collision. Using the \it{full} Coulomb correction, the ratio $R_{\rm out}/R_{\rm side}$ is smaller than unity for $<k_{\rm T}>$ from 0.25 to 1.2 GeV/c and for all measured centralities. However, using recently developed partial Coulomb correction methods, we find that $R_{\rm out}/R_{\rm side}$ is 0.8-1.1 for the measured $<k_{\rm T}>$ range, and approximately constant at unity with the number of participants.

1 data table match query

The $k_T$ dependence of the Bertsch-Pratt radius parameters and $\lambda$ for charged pions for 0-30% centrality. Filled triangles show the results from fits to a core-halo structure by Eq. 2, with statistical error bars and systematic error bands. Open circles and squares show the results from the full (Eq. 1) and 50% partial (Eq. 3) Coulomb corrections with statistical error bars, respectively. Results at 130 GeV by PHENIX are given by filled circles.


Enhanced production of direct photons in Au+Au collisions at sqrt(s_NN)=200 GeV and implications for the initial temperature

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 132301, 2010.
Inspire Record 784417 DOI 10.17182/hepdata.141275

The production of low mass e+e- pairs for m_{e+e-} < 300 MeV/c^2 and 1 < p_T <5 GeV/c is measured in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. Enhanced yield above hadronic sources is observed. Treating the excess as internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of direct photon yield over p+p is exponential in transverse momentum, with inverse slope T = 221 +/- 19 (stat) +/- 19 (syst) MeV. Hydrodynamical models with initial temperatures ranging from 300--600 MeV at times of ~ 0.6 - 0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at ~ 170 MeV.

1 data table match query

The fraction of the direct photon component as a function of $p_T$.


Kinematic dependence of azimuthal anisotropies in $p$ $+$ Au, $d$ $+$ Au, $^3$He $+$ Au at $\sqrt{s_{_{NN}}}$ = 200 GeV 

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 105 (2022) 024901, 2022.
Inspire Record 2026169 DOI 10.17182/hepdata.132366

There is strong evidence for the formation of small droplets of quark-gluon plasma in $p/d/^{3}$He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in $p$+$p$/Pb collisions at the Large Hadron Collider. In particular, the analysis of data at RHIC for different geometries obtained by varying the projectile size and shape has proven insightful. In the present analysis, we find excellent agreement with the previously published PHENIX at RHIC results on elliptical and triangular flow with an independent analysis via the two-particle correlation method, which has quite different systematic uncertainties and an independent code base. In addition, the results are extended to other detector combinations with different kinematic (pseudorapidity) coverage. These results provide additional constraints on contributions from nonflow and longitudinal decorrelations.

1 data table match query

$v_2$ vs $p_T$, p+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination


Transverse mass dependence of two-pion correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 192302, 2002.
Inspire Record 581871 DOI 10.17182/hepdata.141647

Two-pion correlations in sqrt(s_NN)=130 GeV Au+Au collisions at RHIC have been measured over a broad range of pair transverse momentum k_T by the PHENIX experiment at RHIC. The k_T dependent transverse radii are similar to results from heavy ion collisions at sqrt(s_NN) = 4.1, 4.9, and 17.3 GeV, whereas the longitudinal radius increases monotonically with beam energy. The ratio of the outwards to sidewards transverse radii (R_out/R_side) is consistent with unity and independent of k_T.

1 data table match query

The top panel shows the measured $R_{side}$ from identical pions for PHENIX. The bottom panel shows the ratio $R_{out}/R_{side}$ as a function of $k_T$. Longitudinal Co-Moving System (LCMS) frame for $\pi^+$