Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 105 (2022) 014901, 2022.
Inspire Record 1914564 DOI 10.17182/hepdata.115993

The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $\sqrt{s_{\rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.

225 data tables match query

fig2_left_low_isobarpaper_star_blue_case2_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_grey_data_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_red_case3_zrzr_nonzeros.

More…

Measurement of Groomed Jet Substructure Observables in \pp Collisions at $\sqrt{s} = 200$ GeV with STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 811 (2020) 135846, 2020.
Inspire Record 1783875 DOI 10.17182/hepdata.93789

In this letter, measurements of the shared momentum fraction ($z_{\rm{g}}$) and the groomed jet radius ($R_{\rm{g}}$), as defined in the SoftDrop algorihm, are reported in \pp collisions at $\sqrt{s} = 200$ GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from $R = 0.2 - 0.6$ in the transverse momentum range $15 < p_{\rm{T, jet}} < 60$ GeV$/c$. These studies show that, in the $p_{\rm{T, jet}}$ range accessible at $\sqrt{s} = 200$ GeV and with increasing jet resolution parameter and jet transverse momentum, the $z_{\rm{g}}$ distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the $p_{\rm{T, jet}}$, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both $z_{\rm{g}}$ and $R_{\rm{g}}$, resulting in opportunities for fine parameter tuning of these models for \pp collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high $p_{\rm{T, jet}}$, but fail at small jet resolution parameters and low jet transverse momenta.

3 data tables match query

The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.4$.

The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.2$.

The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.6$.


Spin observables in neutron proton elastic scattering.

Ahmidouch, A. ; Arnold, J. ; van den Brandt, B. ; et al.
Eur.Phys.J.C 2 (1998) 627-641, 1998.
Inspire Record 471273 DOI 10.17182/hepdata.11376

The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$

20 data tables match query

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

More…

Spin observables in elastic proton scattering from polarized He-3

Brash, E.J. ; Hausser, O. ; Cummings, W.J. ; et al.
Phys.Rev.C 52 (1995) 807-817, 1995.
Inspire Record 411136 DOI 10.17182/hepdata.25873

We have measured the absolute cross section σ(θ) and complete sets of spin observables A00ij in He3(p,p) elastic scattering at energies of 200 and 500 MeV. The observables depend on linear combinations of six complex scattering amplitudes for the p−3He system and provide a severe test of current reaction models. The in-scattering plane observables (A00mm, A00ll, A00lm, and A00ml) are all in quantitative disagreement with fully microscopic nonrelativistic optical model calculations and nonrelativistic distorted wave Born approximation calculations.

6 data tables match query

A00N0 is analyzing power.

A00N0 is analyzing power.

A00NN is spin correlation parameter.

More…

A Determination of alpha-s (M (Z0)) at LEP using resummed QCD calculations

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 59 (1993) 1-20, 1993.
Inspire Record 354188 DOI 10.17182/hepdata.14427

The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio

7 data tables match query

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

More…

p p elastic scattering polarization transfer K(onno) and depolarization D(onon) between 1.94-GeV and 2.80-GeV.

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Eur.Phys.J.C 5 (1998) 453-460, 1998.
Inspire Record 481194 DOI 10.17182/hepdata.43094

A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and

27 data tables match query

No description provided.

No description provided.

No description provided.

More…

Production of charged hadrons with large transverse momenta pp collisions at 70 GeV

Abramov, V.V. ; Alekseev, A.V. ; Baldin, B.Yu. ; et al.
JETP Lett. 33 (1981) 289, 1981.
Inspire Record 154714 DOI 10.17182/hepdata.70441

None

1 data table match query

No description provided.


OBSERVATION OF INVERSE ELECTROPRODUCTION OF PIONS ON C-12 NUCLEUS AT 164-MeV PION ENERGY AND DETERMINATION OF F1(v) NUCLEON FORM-FACTOR

Alekseev, G.D. ; Blokhintseva, T.D. ; Karpukhin, V.V. ; et al.
Sov.J.Nucl.Phys. 46 (1987) 801, 1987.
Inspire Record 247868 DOI 10.17182/hepdata.38865

None

3 data tables match query

No description provided.

No description provided.

No description provided.


Search for an H dibaryon

Alekseev, A.N. ; Berezin, V.M. ; Bogdanov, E.T. ; et al.
Sov.J.Nucl.Phys. 52 (1990) 1016-1018, 1990.
Inspire Record 310395 DOI 10.17182/hepdata.17311

None

1 data table match query

The cross-section obtained in the paper is the model dependent estimation.


Production of Hadrons at $p_T$ From 0.5-{GeV}/$c$ to 2.5-{GeV}/$c$ in Proton - Nucleus Collisions at 70-{GeV} Energy

Abramov, V.V. ; Alekseev, A.V. ; Baldin, B.Yu. ; et al.
Sov.J.Nucl.Phys. 31 (1980) 343, 1980.
Inspire Record 143799 DOI 10.17182/hepdata.18132

None

11 data tables match query

PRELIMINARY DATA.

PRELIMINARY DATA.

No description provided.

More…