A MEASUREMENT OF e+ e- ---> b anti-b FORWARD - BACKWARD CHARGE ASYMMETRY BETWEEN s**(1/2) = 52-GeV AND 57-GeV

The AMY collaboration Sagawa, H. ; Lim, J. ; Abe, K. ; et al.
Phys.Rev.Lett. 63 (1989) 2341, 1989.
Inspire Record 279824 DOI 10.17182/hepdata.19996

Using 123 multihadronic inclusive muon-production e+e− annihilation events at an average c.m. energy of 55.2 GeV, we extracted the forward-backward charge asymmetry of the e+e−→bb¯ process and the R ratio for bb¯ production. We used an analysis method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The results, Ab=-0.72±0.28(stat)±0.13(syst) and Rb=0.57±0.16±0.10, are consistent with the standard model.

1 data table match query

Asymmetry in BOTTOM quark production.


A Measurement of the b anti-b forward backward asymmetry using the semileptonic decay into muons

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 276 (1992) 536-546, 1992.
Inspire Record 322498 DOI 10.17182/hepdata.29264

The forward-backward asymmetry of bottom quarks is measured with statistics of approximately 80 000 hadronic Z 0 decays produced in e + e − collisions at a centre of mass energy of √ s ≈ M z . The tagging of b quark events has been performed using the semileptonic decay channel b→X+ μ . Because the asymmetry depends on the weak coupling, this leads to a precise measurement of the electroweak mixing angle sin 2 θ w . The experimental result is A FB b = 0.115±0.043(stat.)±0.013(syst.). After correcting the value for the B 0 B 0 mixing this becomes A FB b =0.161±0.060(stat.)±0.021(syst.) corresponding to sin 2 θ W MS =0.221±0.011( stat. )±0.004( syst. ) .

2 data tables match query

Experimentally measured asymmetry.

Asymmetry corrected for mixing using mixing parameter 0.143 +- 0.023.


A Study of the charm and bottom quark production in e+ e- annihilation at s**(1/2) = 58-GeV using prompt electrons

The VENUS collaboration Abe, K. ; Amako, K. ; Arai, Y. ; et al.
Phys.Lett.B 313 (1993) 288-298, 1993.
Inspire Record 355172 DOI 10.17182/hepdata.28868

We have studied c (charm) and b (bottom) quark production at the TRISTAN energy region by tagging prompt electrons from the semileptonic decays. Electrons were identified over a wide momentum range between 1 and 29 GeV/ c by a transition-radiation-detector in addition to a lead-glass calorimeter. The production cross sections of c and b quarks and the mean values of the fragmentation functions for c and b quarks were obtained as σ c = 55.9±8.8(stat.)±7.9(syst.) pb, σ b = 13.1±2.9(stat.)±1.0(syst.) pb, 〈 x c 〉 = 0.44±0.08(stat.)±0.04(syst.) and 〈 x b 〉 = 0.72±0.12(stat.)±0.08(syst.), respectively. The forward-backward asymmetries of the c and b quarks were also measured to be −0.57±0.16(stat.)±0.06(syst.) and −0.64±0.26(stat.)± 0.07(syst.), respectively. Both the cross sections and the forward-backward asymmetries of the c and b quarks are consistent with the standard model.

2 data tables match query

No description provided.

No description provided.


A measurement of the charm and bottom forward-backward asymmetries using D mesons at LEP.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 73 (1997) 379-395, 1997.
Inspire Record 421995 DOI 10.17182/hepdata.47946

A measurement of the charm and bottom forward-backward asymmetry in e+e− annihilations is presented at energies on and around the peak of the Z0 resonance. Decays of the Z0 into charm and bottom quarks are tagged using D mesons identified in about 4 million hadronic decays of the Z0 boson recorded with the OPAL detector at LEP between 1990 and 1995. Approximately 33000 D mesons are tagged in seven different decay modes. From these the charm and bottom asymmetries are measured in three energy ranges around the Z0 peak: \(\matrix {A_{\rm FB}^{\rm c}=0.039\pm 0.051\pm 0.009\cr A_{\rm FB}^{\rm c}=0.063\pm 0.012\pm 0.006\cr A_{\rm FB}^{\rm c}=0.158\pm 0.041\pm 0.011}\)\(\matrix {A_{\rm FB}^{\rm b}=0.086\pm 0.108\pm 0.029\cr A_{\rm FB}^{\rm b}=0.094\pm 0.027\pm 0.022\cr A_{\rm FB}^{\rm b}=0.021\pm 0.090\pm 0.026}\)\(\matrix{\langle E_{cm}\rangle =89.45\ {\rm GeV}\cr \langle E_{cm}\rangle =91.22\ {\rm GeV}\cr \langle E_{cm}\rangle =93.00\ {\rm GeV}}\) The results are in agreement with the predictions of the standard model and other measurements at LEP.

1 data table match query

Forward-backward asymmetry.


Cross-sections and leptonic forward-backward asymmetries from the Z0 running of LEP.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 16 (2000) 371-405, 2000.
Inspire Record 527605 DOI 10.17182/hepdata.49969

During 1993 and 1995 LEP was run at 3 energies near the Z$^0$peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP o

10 data tables match query

Cross section and forward-backward asymmetry in the E+ E- channel for the 1993 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.46 PCT (efficiencies and backgrounds) and 0.29 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0026.

Cross section and forward-backward asymmetry in the E+ E- channel for the 1994 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.52 PCT (efficiencies and backgrounds) and 0.14 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0021.

Cross section and forward-backward asymmetry in the E+ E- channel for the 1995 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.52 PCT (efficiencies and backgrounds) and 0.14 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0020.

More…

DELPHI results on the Z0 resonance parameters through its hadronic and leptonic decay modes

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
CERN-PPE-90-119, 1990.
Inspire Record 298840 DOI 10.17182/hepdata.47313

None

2 data tables match query

Asymmetries. Systematic error is 1 pct.

Asymmetries. Systematic error is 1 pct.


Determination of Z0 resonance parameters and couplings from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Nucl.Phys.B 367 (1991) 511-574, 1991.
Inspire Record 317493 DOI 10.17182/hepdata.33016

From measurements of the cross sections for e + e − → hadrons and the cross sections and forward-backward charge-asymmetries for e e −→ e + e − , μ + μ − and π + π − at several centre-of-mass energies around the Z 0 pole with the DELPHI apparatus, using approximately 150 000 hadronic and leptonic events from 1989 and 1990, one determines the following Z 0 parameters: the mass and total width M Z = 91.177 ± 0.022 GeV, Γ Z = 2.465 ± 0.020 GeV , the hadronic and leptonic partial widths Γ h = 1.726 ± 0.019 GeV, Γ l = 83.4 ± 0.8 MeV, the invisible width Γ inv = 488 ± 17 MeV, the ratio of hadronic over leptonic partial widths R Z = 20.70 ± 0.29 and the Born level hadronic peak cross section σ 0 = 41.84±0.45 nb. A flavour-independent measurement of the leptonic cross section gives very consistent results to those presented above ( Γ l = 83.7 ± 0.8 rmMeV ). From these results the number of light neutrino species is determined to be N v = 2.94 ±0.10. The individual leptonic widths obtained are: Γ e = 82.4±_1.2 MeV, Γ u = 86.9±2.1 MeV and Γ τ = 82.7 ± 2.4 MeV. Assuming universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are: V ̄ l 2 = 0.0003±0.0010 and A ̄ l 2 = 0.2508±0.0027 . These values correspond to the electroweak parameters: ϱ eff = 1.003 ± 0.011 and sin 2 θ W eff = 0.241 ± 0.009. Within the Minimal Standard Model (MSM), the results can be expressed in terms of a single parameter: sin 2 θ W M ̄ S = 0.2338 ± 0.0027 . All these values are in good agreement with the predictions of the MSM. Fits yield 43< m top < 215 GeV at the 95% level. Finally, the measured values of Γ Z and Γ inv are used to derived lower mass bounds for possible new particles.

8 data tables match query

Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error is 0.005 not included.

Forward-backward asymmetry after t-channel subtraction but in the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error is 0.005 not included.

Forward-backward asymmetry calculated using the counting method. Data are corrected for full solid angle, but not for cuts on momenta or acollinearity.. Additional systematic error is 0.005.

More…

Experimental Study of Electroweak Parameters at {PETRA} Energies (12-{GeV} $< E_{CMS} <$ 36.7-{GeV})

The MARK-J collaboration Barber, D.P. ; Becker, U. ; Bei, G.D. ; et al.
Phys.Rev.Lett. 46 (1981) 1663, 1981.
Inspire Record 164675 DOI 10.17182/hepdata.3303

We have performed a high-statistics measurement of Bhabha scattering and of the production of hadrons in electron-positron annihilation at PETRA energies (12 GeV<~s<~36.7 GeV). Combining the results with measurements of μ+μ− and τ+τ− production enables us to compare our results with electroweak theory. We find sin2θw=0.27±0.08. This is in good agreement with the value obtained from neutrino experiments which were carried out in entirely different kinematic regions.

1 data table match query

No description provided.


Experimental limits on extra Z bosons from e+ e- annihilation data with the VENUS detector at s**(1/2) = 50-GeV to approximately 64-GeV

The VENUS collaboration Abe, K. ; Amako, K. ; Arai, Y. ; et al.
Phys.Lett.B 246 (1990) 297-305, 1990.
Inspire Record 296392 DOI 10.17182/hepdata.29664

We have tested extra Z models in the reactions e + e − → μ + μ − , τ + τ − and hadrons in the energy range 50< s <64 GeV using the VENUS detector at the TRISTAN e + e − storage ring. Our data are in good agreement with the standard model prediction ( χ 2 N Df = 2.9 31 ) ). We have obtained 90% confidence-level lower limits of 105, 125 and 231 GeV for the masses of Z Ψ , Z η and Z χ bosons which are expected from the E 6 grand unified theory. We also place a 90% confidence-level lower limit of 426 GeV for the mass of an extra-Z boson whose couplings to quarks and leptons are assumed to be the same as those for the standard Z boson. Our results exceed the previous experimental limits from the p p collider experiments, although there have been some combined analyses reporting the limits better than those obtained in the present analysis.

3 data tables match query

New measurements. Statistical and systematic errors combined in quadrature.

New measurements.

Combination of selected VENUS data from this and previous publications. Statistical and systematic errors combined in quadrature.


Experimental study of b quark jets in e+ e- annihilation at TRISTAN

The TOPAZ collaboration Nagai, K. ; Enomoto, R. ; Abe, T. ; et al.
Phys.Lett.B 278 (1992) 506-510, 1992.
Inspire Record 333342 DOI 10.17182/hepdata.29230

An experimental study of b-quark jets using high- p T electrons was carried out at √ s =58 GeV with the TOPAZ detector at the e + e − collider TRISTAN at KEK. The forward-backward charge asymmetry of the b-quark was obtained to be A b b ̄ =−0.55±0.27( stat. )±0.07( syst. ) , consistent with the standard model prediction. Also, such jet properties of the b-quark as the average charged multiplicity and the rapidity of charged particles were analyzed. In order to purify the b-quark event samples in this analysis, only events with backward-going electrons or forward-going positrons were used. The energy dependence of these jet properties was studied by making comparisons with the results of the DELCO experiment at the PEP collider (√ s =29 GeV) at SLAC.

1 data table match query

No description provided.