The Forward - backward asymmetry of e+ e- ---> b anti-b and e+ e- ---> c anti-c using leptons in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Akers, R. ; Alexander, G. ; et al.
Z.Phys.C 60 (1993) 19-36, 1993.
Inspire Record 356097 DOI 10.17182/hepdata.14320

The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$

5 data tables match query

Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.

Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.

Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.

More…

Measurement of the Hadronic Decay Current in tau- --> pi- pi- pi+ tau-neutrino

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 67 (1995) 45-56, 1995.
Inspire Record 393414 DOI 10.17182/hepdata.52012

The decay τ−→π−−+vτ has been studied using data collected with the OPAL detector at LEP during 1992 and 1993. The hadronic structure functions for this decay are measured model independently assuming G-parity invariance and neglecting scalar currents. Simultaneously the parity violating asymmetry parameter is determined to be\(\gamma VA = 1.08 _{ - 0.41- 0.25}^{ + 0.46+ 0.14} \), consistent with the Standard Model prediction of γVA=1 for left-handed tau neutrinos. Models of Kühn and Santamaria and of Isgur et al. are used to fit distributions of the invariant 3π mass as well as 2π mass projections of the Dalitz plot. The model dependent mass and width of thea1 resonance are measured to be\(m_{a_1 }= 1.266 \pm 0.014_{ - 0.002}^{ + 0.012} \) GeV and\(\Gamma _{a_1 }= 0.610 \pm 0.049_{ - 0.019}^{ + 0.053} \) GeV for the Kühn and Santamaria model and\(m_{a_1 }= 1.202 \pm 0.009_{ - 0.001}^{ + 0.009} \) GeV and\(\Gamma _{a_1 }= 0.422 \pm 0.023_{ - 0.004}^{ + 0.033} \) GeV for the Isgur et al. model. The model dependent values obtained for the parity violating asymmetry parameter are γVA=0.87±0.27−0.06+0.05 for the Kühn and Santamaria model and γVA=1.10±0.31−0.14+0.13 for the Isgur et al. model. Within the Isgur et al. model the ratio of theS-andD-wave amplitudes is measured to beD/S=−0.09±0.03±0.01.

1 data table match query

Here ASYM is parity violating asymmetry parameter gamma_VA = 2g_v*g_A/(g_v **2+g_A**2) (see paper).


Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 383-389, 2012.
Inspire Record 1115721 DOI 10.17182/hepdata.59737

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003<x<0.7. The new measurements have small statistical and systematic uncertainties of a few percent and confirm with considerably better accuracy the previous COMPASS measurement. The Sivers asymmetry is found to be compatible with zero for negative hadrons and positive for positive hadrons, a clear indication of a spin-orbit coupling of quarks in a transversely polarised proton. As compared to measurements at lower energy, a smaller Sivers asymmetry for positive hadrons is found in the region x > 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong dependence on the four-momentum transfer to the nucleon, in agreement with the most recent calculations.

54 data tables match query

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

More…

Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 376-382, 2012.
Inspire Record 1115720 DOI 10.17182/hepdata.59732

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Collins asymmetry of the proton was extracted in the Bjorken x range 0.003<x<0.7. These new measurements confirm with higher accuracy previous measurements from the COMPASS and HERMES collaborations, which exhibit a definite effect in the valence quark region. The asymmetries for negative and positive hadrons are similar in magnitude and opposite in sign. They are compatible with model calculations in which the u-quark transversity is opposite in sign and somewhat larger than the d-quark transversity distribution function. The asymmetry is extracted as a function of Bjorken $x$, the relative hadron energy $z$ and the hadron transverse momentum p_T^h. The high statistics and quality of the data also allow for more detailed investigations of the dependence on the kinematic variables. These studies confirm the leading-twist nature of the Collins asymmetry.

54 data tables match query

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

More…

Separated cross sections in \pi^0 electroproduction at threshold at Q^2 = 0.05 GeV^2/c^2

The A1 collaboration Weis, M. ; Bartsch, P. ; Baumann, D. ; et al.
Eur.Phys.J.A 38 (2008) 27-33, 2008.
Inspire Record 751930 DOI 10.17182/hepdata.51606

The differential cross sections \sigma_0=\sigma_T+\epsilon \sigma_L, \sigma_{LT}, and \sigma_{TT} of \pi^0 electroproduction from the proton were measured from threshold up to an additional center of mass energy of 40 MeV, at a value of the photon four-momentum transfer of Q^2= 0.05 GeV^2/c^2 and a center of mass angle of \theta=90^\circ. By an additional out-of-plane measurement with polarized electrons \sigma_{LT'} was determined. This showed for the first time the cusp effect above the \pi^+ threshold in the imaginary part of the s-wave. The predictions of Heavy Baryon Chiral Perturbation Theory are in disagreement with these data. On the other hand, the data are somewhat better predicted by the MAID phenomenological model and are in good agreement with the dynamical model DMT.

1 data table match query

Beam helicity asymmetry.


Measurement of the Lepton Forward-Backward Asymmetry in Inclusive $B \rightarrow X_s \ell^+ \ell^-$ Decays

The Belle collaboration Sato, Y. ; Ishikawa, A. ; Yamamoto, H. ; et al.
Phys.Rev.D 93 (2016) 032008, 2016.
Inspire Record 1283183 DOI 10.17182/hepdata.64698

We report the first measurement of the lepton forward-backward asymmetry ${\cal A}_{\rm FB}$ as a function of the squared four-momentum of the dilepton system, $q^2$, for the electroweak penguin process $B \rightarrow X_s \ell^+ \ell^-$ with a sum of exclusive final states, where $\ell$ is an electron or a muon and $X_s$ is a hadronic recoil system with an $s$ quark. The results are based on a data sample containing $772\times10^6$ $B\bar{B}$ pairs recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. ${\cal A}_{\rm FB}$ for the inclusive $B \rightarrow X_s \ell^+ \ell^-$ is extrapolated from the sum of 10 exclusive $X_s$ states whose invariant mass is less than 2 GeV/$c^2$. For $q^2 > 10.2$ GeV$^2$/$c^2$, ${\cal A}_{\rm FB} < 0$ is excluded at the 2.3$\sigma$ level, where $\sigma$ is the standard deviation. For $q^2 < 4.3$ GeV$^2$/$c^2$, the result is within 1.8$\sigma$ of the Standard Model theoretical expectation.

1 data table match query

The value of ASYM(FB) obtained from the fit in each of the four Q**2 bins.


Forward - backward charge asymmetry of quark pairs produced at the KEK TRISTAN e+ e- collider

The AMY collaboration Stuart, D. ; Breedon, R.E. ; Chinitz, L.M. ; et al.
Phys.Rev.D 49 (1994) 3098-3105, 1994.
Inspire Record 378569 DOI 10.17182/hepdata.22552

We report on a measurement of the forward-backward charge asymmetry in e+e−→qq¯ at KEK TRISTAN, where the asymmetry is near maximum. We sum over all flavors and measure the asymmetry by determining the charge of the quark jets. In addition we exploit flavor dependencies in the jet charge determination to enhance the contributions of certain flavors. This provides a check on the asymmetries of individual flavors. The measurement agrees with the standard model expectations.

1 data table match query

Forward--backward asymmetry summed over all flavours of quarks.


Spin asymmetries from O-16(gamma(pol.),p pi-) near Delta resonance energies

Hicks, K. ; Baghaei, H. ; Caracappa, A. ; et al.
Phys.Rev.C 55 (1997) R12-R15, 1997.
Inspire Record 456890 DOI 10.17182/hepdata.25766

Spin asymmetries for the 16O(γ→,pπ−) reaction are reported for incident photon energies of 293 ± 20 MeV, proton angles ranging from 28° to 140° (lab), and pion angles of 35° to 115°. The data are compared with calculations in a quasifree plane-wave impulse approximation model. This model is in good agreement with the data at small momentum transfer q, but does not follow the trend of the data at large q. Sensitivity to the Δ-nucleus potential and to modification of the Δ lifetime from nuclear medium effects are explored using a simple modification of the Δ propagator in the calculations.

6 data tables match query

The data are extracted from the figures by S.Slabospitsky. ASYM is the spin asymmetry. It is the ratio of the difference to the sum of the cross sections with the photon's linear polarization oriented parallel or perpendicular to the scattering plane.

The data are extracted from the figures by S.Slabospitsky. ASYM is the spin asymmetry. It is the ratio of the difference to the sum of the cross sections with the photon's linear polarization oriented parallel or perpendicular to the scattering plane.

The data are extracted from the figures by S.Slabospitsky. ASYM is the spin asymmetry. It is the ratio of the difference to the sum of the cross sections with the photon's linear polarization oriented parallel or perpendicular to the scattering plane.

More…

Energy Dependence of the Charge Asymmetry a ($T (\pi$), $\theta$) in $\pi d$ Elastic Scattering

Smith, G.R. ; Gill, D.R. ; Ottewell, D. ; et al.
Phys.Rev.C 38 (1988) 240-250, 1988.
Inspire Record 250814 DOI 10.17182/hepdata.26223

Angular distributions of charge asymmetry A(Tπ,θ), have been measured for πd elastic scattering. Data were obtained in the backward hemisphere for pion bombarding energies of 143, 180, 220, and 256 MeV. The results are compared with predictions employing different mass and width parameters for the delta isobars.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Inclusive Electron Production From Heavy Quarks in $e^+ e^-$ Annihilation at 34.6-{GeV} Center-of-mass Energy

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Phys.Lett.B 146 (1984) 443-449, 1984.
Inspire Record 202782 DOI 10.17182/hepdata.30507

The production of electrons by bottom and charm hadrons has been studied in e + e − annihilation at 34.6 GeV center of mass energy. It is observed that the b quark fragmentation function is peaked at large values of the scaling variable z with 〈 z b 〉 = 0.84 +0.15 + 0.15 −0.10 − 0.11 . For c quarks 〈 z c 〉 = 0.57 +0.10 + 0.05 −0.09 − 0.06 is observed. A forward-backward charge asymmetry of A = −0.25 ± 0.22 was measured in b production.

2 data tables match query

THE VALUE OF ASYMMETRY WAS DETERMINED USING A SAMPLE OF PROMPT ELECTRONS.

THE VALUE OF ASYMMETRY WAS DETERMINED USING A SAMPLE OF PROMPT ELECTRONS.


Inclusive hadron photoproduction from longitudinally polarized protons and deuterons.

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 458 (1999) 536-544, 1999.
Inspire Record 495554 DOI 10.17182/hepdata.28074

We report measurements of the asymmetry A_parallel for inclusive hadron production on longitudinally polarized proton and deuteron targets by circularly polarized photons. The photons were produced via internal and external bremsstrahlung from an electron beam of 48.35 GeV. Asymmetries for both positive and negative signed hadrons, and a subset of identified pions, were measured in the momentum range 10<P<30 GeV at 2.75 and 5.5 degrees. Small non-zero asymmetries are observed for the proton, while the deuteron results are consistent with zero. Recent calculations do not describe the data well.

4 data tables match query

The asymmetry for polarized photoproduction of inclusive hadrons from a polarized proton target. The errors are statistical only.

The asymmetry for polarized photoproduction of inclusive identified pions from a polarized proton target. The errors are statistical only.

The asymmetry for polarized photoproduction of inclusive hadrons from a polarized deuteron target. The errors are statistical only.

More…

Production and Muonic Decay of Heavy Quarks in e+ e- Annihilation at 34.5-GeV

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Z.Phys.C 22 (1984) 219, 1984.
Inspire Record 194775 DOI 10.17182/hepdata.16252

The production of prompt muons ine+e− annihilation has been studied at centre of mass energies near 34.5 GeV. The measured semi-muonic branching ratios ofb andc quarks areB(b»Xμv) =0.117±0.028±0.01 andB(c→Xμv)=0.082 ±0.012a−0.01+0.02. The fragmentation functions of heavy quarks are hard, <zb>=0.85a−0.12–0.07+0.10+0.02 and <zc> =0.77a−0.07–0.11+0.05+0.03. Limits have been set on flavour changing neutral current decays:B(b→Xµ+µ−) <0.02 andB(b→Xµ+µ− (95% confidence level).

1 data table match query

THE VALUE OF ASYMMETRY WAS DETERMINED USING A SAMPLE OF PROMPT MUONS.


FORWARD - BACKWARD CHARGE ASYMMETRY IN e+ e- ---> HADRON JETS

The AMY collaboration Stuart, D. ; Breedon, R.E. ; Kim, G.N. ; et al.
Phys.Rev.Lett. 64 (1990) 983, 1990.
Inspire Record 283082 DOI 10.17182/hepdata.19965

The forward-backward asymmetry of quarks produced in e+e− annihilations, summed over all flavors, is measured at √s between 50 and 60.8 GeV. Methods of determining the charge direction of jet pairs are discussed. The asymmetry is found to agree with the five-flavor standard model.

1 data table match query

Forward backward asymmetry summed over all flavours of quarks.


Measurement of the target asymmetry of eta and pi0 photoproduction on the proton.

Bock, A. ; Anton, G. ; Beulertz, W. ; et al.
Phys.Rev.Lett. 81 (1998) 534-537, 1998.
Inspire Record 474492 DOI 10.17182/hepdata.19492

At the tagged photon facility PHOENICS at the Bonn accelerator ELSA a measurement of the target asymmetry of the reaction γp→pη from threshold to 1150 MeV has been performed. Simultaneously the reaction γp→pπ0 has been measured in the first resonance region. Results are presented for both reactions. The target asymmetry data are suited to put considerable constraints on the model parameters used for the theoretical description of meson photoproduction.

3 data tables match query

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).


Angular and polarization dependence of Compton scattering from He-4 in the Delta resonance region

Kraus, A. ; Selke, O. ; Wissmann, F. ; et al.
Phys.Lett.B 432 (1998) 45-50, 1998.
Inspire Record 487231 DOI 10.17182/hepdata.28171

Using linearly polarized tagged photons from coherent bremsstrahlung, differential cross sections and beam asymmetries for Compton scattering by 4 He have been measured at MAMI in the energy interval between 150 MeV and 500 MeV for scattering angles of θ γ lab =37°, 93° and 137°, thus largely increasing the available data base. Improved calculations in terms of the Δ -hole model completely fail to describe the data at large scattering angles. The same proved to be true for a schematic model, even after taking into account properties of nuclear photo-absorption in very detail.

1 data table match query

Axis error includes +- 0.0/0.0 contribution.


Measurement of the forward - backward asymmetries for charm and bottom quark pair productions at S**(1/2) = 58-GeV with electron tagging

The TOPAZ collaboration Nakano, E. ; Enomoto, R. ; Iwasaki, M. ; et al.
Phys.Lett.B 340 (1994) 135-142, 1994.
Inspire Record 39496 DOI 10.17182/hepdata.28532

We have measured, with electron tagging, the forward-backward asymmetries of charm- and bottom-quark pair productions at $\langle \sqrt{s} \rangle$=58.01GeV, based on 23,783 hadronic events selected from a data sample of 197pb$~{-1}$ taken with the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are $A_{FB}~c = -0.49 \pm 0.20(stat.) \pm 0.08 (sys.)$ and $A_{FB}~b = -0.64 \pm 0.35(stat.) \pm 0.13 (sys.)$, which are consistent with the standard model predictions.

1 data table match query

No description provided.


Enhanced leading production of D+- and D*+- in 250-GeV pi+- - nucleon interactions

The E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.Lett. 72 (1994) 812-815, 1994.
Inspire Record 361344 DOI 10.17182/hepdata.42499

A leading charm meson is one with longitudinal momentum fraction, xF>0, whose light quark (or antiquark) is of the same type as one of the quarks in the beam particles. We report on the production asymmetry, A=[σ(leading-σ(nonleading)]/[σ(leading)+σ(nonleading)] as a function of xF. The data consist of 1500 fully reconstructed D± and D*± decays in Fermilab experiment E 769. We find a significant asymmetry for the production of charm quarks is not expected in perturbative quantum chromodynamics.

2 data tables match query

Asymmetry as function of XL.

Asymmetry as function of PT**2.


Asymmetries in the production of Lambda0 in 250-GeV/c pi+-, K+- and p nucleon interactions.

The E769 collaboration Alves, G.A ; Amato, S ; Anjos, J.C ; et al.
Phys.Lett.B 559 (2003) 179-186, 2003.
Inspire Record 615414 DOI 10.17182/hepdata.41928

Using data from Fermilab fixed-target experiment E769, we have measured particle-antiparticle production asymmetries for Lambda0 hyperons in 250 GeV/c pi+-, K+- and p -- nucleon interactions. The asymmetries are measured as functions of Feynman-x (x_F) and p_t^2 over the ranges -0.12<=x_F<=0.12 and 0<=p_t^2<=3 (GeV/c)^2 (for positive beam) and -0.12<=x_F<=0.4 and 0<=p_t^2<=10 (GeV/c)^2 (for negative beam). We find substantial asymmetries, even at x_F around zero. We also observe leading-particle-type asymmetries. These latter effects are qualitatively as expected from valence-quark content of the target and variety of projectiles studied.

4 data tables match query

LAMBDA production asymmetries versus XL for the positive beams.

LAMBDA production asymmetries versus PT**2 for the positive beams.

LAMBDA production asymmetries versus XL for the negative beams.

More…

Measurement of the forward - backward asymmetry of e+ e- ---> c anti-c at s**(1/2) = 57.95-GeV

The TOPAZ collaboration Nakano, E. ; Enomoto, R. ; Abe, K. ; et al.
Phys.Lett.B 314 (1993) 471-476, 1993.
Inspire Record 361662 DOI 10.17182/hepdata.28846

Measurements of the forward-backward asymmetry of e + e − → cc events were carried out at a mean √s energy of 57.95 GeV at TRISTAN, KEK. The cc events were tagged either by the full-reconstruction of D ∗± or the inclusive P T spectrum of π s ± from D ∗± → D 0 ( D 0 )π s ± . The forward-backward asymmetry was measured to be A FB c = −0.49 −0.13 +0.14 (stat.) ± 0.06 (syst.), consistent with the standard model.

1 data table match query

No description provided.


Polarization at Small Angles in Anti-proton - Carbon Elastic Scattering at {LEAR} Energies

The SING collaboration Martin, A. ; Birsa, R. ; Bos, K. ; et al.
Nucl.Phys.A 487 (1988) 563-590, 1988.
Inspire Record 261245 DOI 10.17182/hepdata.37001

A double-scattering experiment of antiprotons on carbon has been carried out at the Low-Energy Antiproton Ring (LEAR) at CERN, to measure the polarization parameter A p C in antiproton-carbon elastic scattering at small angles. The polarization parameter has been inferred from the azimuthal distribution of the antiprotons after the second scattering. Data have also been collected with a liquid-hydrogen target as the second scatterer, thus allowing the sign of A p C to be determined. The experiment has been performed at two momenta of the extracted antiproton beam, 800 and 1100 MeV/c. A small positive value of the polarization has been observed, compatible with energy independence and a linear increase with the momentum transfer q . Parametrizing A p C as a c q , we get a c = +0.72 0.10 +0.09 ( GeV / c ) −1 . This result is compared with potential model predictions for N̄N amplitudes through a Glauber theory calculation.

6 data tables match query

THETA1(RF=LAB)=8 DEG, THETA POINTED IN TABLE IS THE SECOND SCATTERING ANGLE.

THETA1(RF=LAB)=5 DEG, THETA POINTED IN TABLE IS THE SECOND SCATTERING ANGLE.

THETA1(RF=LAB)=8 DEG, THETA POINTED IN TABLE IS THE SECOND SCATTERING ANGLE.

More…

Measurement of forward - backward charge asymmetry in the process of b quark production in e+ e- annihilation around s**(1/2) = 60-GeV

The VENUS collaboration Shirakata, M. ; Utsumi, M. ; Abe, K. ; et al.
Phys.Lett.B 278 (1992) 499-505, 1992.
Inspire Record 322085 DOI 10.17182/hepdata.29242

We have measured the forward-backward charge asymmetry in the process of b-quark production in e + e − annihilation at TRISTAN. It was made possible by detecting prompt leptons from b-quarks. The obtained asymmetry is A = −0.55±0.15±0.08. If corrected for B-meson mixing effects with the assumptions given in the text, the asymmetry becomes A = f −0.78±0.21±0.11, which is consistent with the prediction of the standard model, namely the assignment of the b-quark to the isospin doublet of the third quark generation.

2 data tables match query

Data uncorrected for meson mixing effects.

Data corrected for meson mixing effects.


A Measurement of the Weak Axial Couplings of the $b$ and $c$ Quark

The JADE collaboration Elsen, E. ; Allison, J. ; Ambrus, K. ; et al.
Z.Phys.C 46 (1990) 349-360, 1990.
Inspire Record 282535 DOI 10.17182/hepdata.15241

The forward-backward charge asymmetries of theb andc quarks are measured with the JADE detector at PETRA at\(\sqrt s= 35\) GeV and 44 GeV using both electrons and muons to tag the heavy quarks. At\(\sqrt s= 35\) GeV, a simultaneous fit for the two asymmetries yields the resultAb=−9.3±5.2% (state.) ndAc=−9.6±4.0% (stat.). The systematic errors are comparable with the statistical uncertainties. Combining the measurements at both energies and alternately constraining the weak coupling of thec andb quark to their Standard Model values (ac=1,ab=−1) increases the precision of the measurement of coupling constant of the other quark. Using this procedureab=−0.72±0.34 andac=0.79±0.40, where the numbers are corrected for\(B\bar B - mixing\) and the errors include both statistical and systematic contributions. The mixing parameter for continuum\(b\bar b - production\) is determined to be χ-0.24±0.12 if both heavy quark coupling constants are constrained to their values in the Standard Model.

4 data tables match query

Results of simultaneous fit to both asymmetries. This table is for the CHARMED quark.

Results of simultaneous fit to both asymmetries. This table is for the BOTTOM quark.

Results for BOTTOM quark asymmetry with c asymmetry constrained to the standard model value.

More…

Heavy Quark Charge Asymmetries With the Cello Detector

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Field, J.H. ; et al.
Z.Phys.C 47 (1990) 333-342, 1990.
Inspire Record 282536 DOI 10.17182/hepdata.15243

The production ofb andc quarks ine+e− annihilation has been studied with the CELLO detector in the range from 35 GeV up to the highest PETRA energies. The heavy quarks have been tagged by their semileptonic decays. The charge asymmetries forb quarks at 35 and 43 GeV have been found to beAb=−(22.2±8.1)% andAb=−(49.1±16.5)%, respectively, using a method incorporating jet variables and their correlations for the separation of the heavy quarks from the back ground of the lighter quarks. Forc quarks we obtainAc=−(12.9±8.8)% andAc=+(7.7±14.0)%, respectively. The axial vector coupling constants of the heavy quarksc andb are found to beac=+(0.29±0.46) andab=−(1.15±0.41) taking\(B^0 \overline {B^0 } \) mixing into account. The results are in agreement with the expectations from the standard model.

2 data tables match query

BOTTOM quark charge asymmetry.

CHARMED quark charge asymmetry.


A Measurement of the Charmed Quark Asymmetry in $e^+ e^-$ Annihilation

The JADE collaboration Ould-Saada, F. ; Allison, J. ; Ambrus, K. ; et al.
Z.Phys.C 44 (1989) 567, 1989.
Inspire Record 278937 DOI 10.17182/hepdata.15357

The charmed quark charge asymmetry has been measured at the average centre of mass energy of 35 GeV with the JADE detector at thee+e− storage ring PETRA. Charmed quarks were identified byD*± tagging using the ΔM technique.D*± mesons were reconstructed through their decay intoD0 mesons resulting in (Kπ) π and (K π π π) π final states. The measured charge asymmetryA=−0.149±0.067 is in agreement with the expectation from the electroweak interference effect in quantum flavour dynamics (QFD).

1 data table match query

CHARMED quark charge asymmetry.


Version 2
Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

The COMPASS collaboration Adolph, C. ; Akhunzyanov, R. ; Alekseev, M.G. ; et al.
Nucl.Phys.B 886 (2014) 1046-1077, 2014.
Inspire Record 1278730 DOI 10.17182/hepdata.64754

Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\cos\phi_h$, $\cos2\phi_h$ and $\sin\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\cos \phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.

17 data tables match query

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of XB. The errors are statistical and systematic.

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of Z. The errors are statistical and systematic.

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of PT(HADRON). The errors are statistical and systematic.

More…