Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $\sqrt{s}=510$ GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.D 105 (2022) 092011, 2022.
Inspire Record 1949588 DOI 10.17182/hepdata.114778

We report measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for inclusive jet and dijet production in polarized proton-proton collisions at midrapidity and center-of-mass energy $\sqrt{s}$ = 510 GeV, using the high luminosity data sample collected by the STAR experiment in 2013. These measurements complement and improve the precision of previous STAR measurements at the same center-of-mass energy that probe the polarized gluon distribution function at partonic momentum fraction 0.015 $\lesssim x \lesssim$ 0.25. The dijet asymmetries are separated into four jet-pair topologies, which provide further constraints on the $x$ dependence of the polarized gluon distribution function. These measurements are in agreement with previous STAR measurements and with predictions from current next-to-leading order global analyses. They provide more precise data at low dijet invariant mass that will better constraint the shape of the polarized gluon distribution function of the proton.

5 data tables match query

Parton jet $p_T$ vs $A_{LL}$ values with associated uncertainties.

Parton dijet $M_{inv}$ vs $A_{LL}$ values with associated uncertainties, for topology A.

Parton dijet $M_{inv}$ vs $A_{LL}$ values with associated uncertainties, for topology B.

More…

Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.D 103 (2021) L091103, 2021.
Inspire Record 1850855 DOI 10.17182/hepdata.104836

We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s}=200\,\mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $\Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x \simeq 0.05$ to $x \simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $\Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $\sqrt{s}=200\,\mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $\Delta g(x,Q^2)$ is positive for $x > 0.05$.

5 data tables match query

Parton inclusive-jet $p_T$ and $A_{LL}$ values with associated uncertainties for jet-$\eta$ region $0.5<|\eta|<1$.

Parton inclusive-jet $p_T$ and $A_{LL}$ values with associated uncertainties for jet-$\eta$ region $|\eta|<0.5$.

Parton dijet invariant mass $M_{inv}$ and $A_{LL}$ values with associated uncertainties for the $\textrm{sign}(\eta_1) = \textrm{sign}(\eta_2)$ topology.

More…

Precise determination of the spin structure function g(1) of the proton, deuteron and neutron.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Phys.Rev.D 75 (2007) 012007, 2007.
Inspire Record 726689 DOI 10.17182/hepdata.11211

Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 \leq x \leq 0.9$ and $0.18 $ GeV$^2$ $\leq Q^2 \leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x \leq 0.021$, a value of $0.330 \pm 0.011\mathrm{(theo.)}\pm0.025\mathrm{(exp.)}\pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.

2 data tables match query

The measured and Born asymmetries for the proton target at the average values of the average values of X, Y,and Q**2 in 45 bins. DSYS includes the 5.2 PCT normalization uncertainty.

The measured and Born asymmetries for the deuterium target at the average values of the average values of X, Y,and Q**2 in 45 bins. DSYS includes the 5 PCT normalization uncertainty.