Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 114 (2015) 252302, 2015.
Inspire Record 1358666 DOI 10.17182/hepdata.72237

We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

10 data tables match query

The distribution of observed charge asymmetry from STAR data.

Pion $v_2${2} as a function of observed charge asymmetry.

$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.

More…

Photon asymmetry in radiative muon capture on calcium

Virtue, C.J. ; Aniol, K.A. ; Entezami, F.E. ; et al.
Nucl.Phys.A 517 (1990) 509-532, 1990.
Inspire Record 297073 DOI 10.17182/hepdata.36825

The photon asymmetry (α γ ) and partial branching ratio above 57 MeV ( R k > 57) have been measured for radiative muon capture on 40 Ca in order to determine the magnitude of the induced-pseudoscalar coupling constant, g p . Based on 2500 events a value of α γ = 1.32 +0.57 −0.47 is obtained from a fit to the photon time spectrum; this implies a value for g p <5.2 g A . For the first time the asymmetry signal is clearly visible and unconstrained multi-parameter fits reproduce the parameters obtained from the decay electron spectrum. The present results are discussed and compared in detail with previous results.

1 data table match query

No description provided.