A Measurement of the b anti-b forward backward asymmetry using the semileptonic decay into muons

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 276 (1992) 536-546, 1992.
Inspire Record 322498 DOI 10.17182/hepdata.29264

The forward-backward asymmetry of bottom quarks is measured with statistics of approximately 80 000 hadronic Z 0 decays produced in e + e − collisions at a centre of mass energy of √ s ≈ M z . The tagging of b quark events has been performed using the semileptonic decay channel b→X+ μ . Because the asymmetry depends on the weak coupling, this leads to a precise measurement of the electroweak mixing angle sin 2 θ w . The experimental result is A FB b = 0.115±0.043(stat.)±0.013(syst.). After correcting the value for the B 0 B 0 mixing this becomes A FB b =0.161±0.060(stat.)±0.021(syst.) corresponding to sin 2 θ W MS =0.221±0.011( stat. )±0.004( syst. ) .

2 data tables match query

Experimentally measured asymmetry.

Asymmetry corrected for mixing using mixing parameter 0.143 +- 0.023.


A measurement of the charm and bottom forward-backward asymmetries using D mesons at LEP.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 73 (1997) 379-395, 1997.
Inspire Record 421995 DOI 10.17182/hepdata.47946

A measurement of the charm and bottom forward-backward asymmetry in e+e− annihilations is presented at energies on and around the peak of the Z0 resonance. Decays of the Z0 into charm and bottom quarks are tagged using D mesons identified in about 4 million hadronic decays of the Z0 boson recorded with the OPAL detector at LEP between 1990 and 1995. Approximately 33000 D mesons are tagged in seven different decay modes. From these the charm and bottom asymmetries are measured in three energy ranges around the Z0 peak: \(\matrix {A_{\rm FB}^{\rm c}=0.039\pm 0.051\pm 0.009\cr A_{\rm FB}^{\rm c}=0.063\pm 0.012\pm 0.006\cr A_{\rm FB}^{\rm c}=0.158\pm 0.041\pm 0.011}\)\(\matrix {A_{\rm FB}^{\rm b}=0.086\pm 0.108\pm 0.029\cr A_{\rm FB}^{\rm b}=0.094\pm 0.027\pm 0.022\cr A_{\rm FB}^{\rm b}=0.021\pm 0.090\pm 0.026}\)\(\matrix{\langle E_{cm}\rangle =89.45\ {\rm GeV}\cr \langle E_{cm}\rangle =91.22\ {\rm GeV}\cr \langle E_{cm}\rangle =93.00\ {\rm GeV}}\) The results are in agreement with the predictions of the standard model and other measurements at LEP.

1 data table match query

Forward-backward asymmetry.


Determination of Z0 resonance parameters and couplings from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Nucl.Phys.B 367 (1991) 511-574, 1991.
Inspire Record 317493 DOI 10.17182/hepdata.33016

From measurements of the cross sections for e + e − → hadrons and the cross sections and forward-backward charge-asymmetries for e e −→ e + e − , μ + μ − and π + π − at several centre-of-mass energies around the Z 0 pole with the DELPHI apparatus, using approximately 150 000 hadronic and leptonic events from 1989 and 1990, one determines the following Z 0 parameters: the mass and total width M Z = 91.177 ± 0.022 GeV, Γ Z = 2.465 ± 0.020 GeV , the hadronic and leptonic partial widths Γ h = 1.726 ± 0.019 GeV, Γ l = 83.4 ± 0.8 MeV, the invisible width Γ inv = 488 ± 17 MeV, the ratio of hadronic over leptonic partial widths R Z = 20.70 ± 0.29 and the Born level hadronic peak cross section σ 0 = 41.84±0.45 nb. A flavour-independent measurement of the leptonic cross section gives very consistent results to those presented above ( Γ l = 83.7 ± 0.8 rmMeV ). From these results the number of light neutrino species is determined to be N v = 2.94 ±0.10. The individual leptonic widths obtained are: Γ e = 82.4±_1.2 MeV, Γ u = 86.9±2.1 MeV and Γ τ = 82.7 ± 2.4 MeV. Assuming universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are: V ̄ l 2 = 0.0003±0.0010 and A ̄ l 2 = 0.2508±0.0027 . These values correspond to the electroweak parameters: ϱ eff = 1.003 ± 0.011 and sin 2 θ W eff = 0.241 ± 0.009. Within the Minimal Standard Model (MSM), the results can be expressed in terms of a single parameter: sin 2 θ W M ̄ S = 0.2338 ± 0.0027 . All these values are in good agreement with the predictions of the MSM. Fits yield 43< m top < 215 GeV at the 95% level. Finally, the measured values of Γ Z and Γ inv are used to derived lower mass bounds for possible new particles.

8 data tables match query

Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error is 0.005 not included.

Forward-backward asymmetry after t-channel subtraction but in the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error is 0.005 not included.

Forward-backward asymmetry calculated using the counting method. Data are corrected for full solid angle, but not for cuts on momenta or acollinearity.. Additional systematic error is 0.005.

More…

Measurement of charge asymmetry in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 259 (1991) 377-388, 1991.
Inspire Record 314476 DOI 10.17182/hepdata.29453

A significant charge asymmetry is observed in the hadronic Z decays with the ALEPH detector at LEP. The asymmetry expressed in terms of the difference in momentum weighted charges in the two event hemispheres is measured to be < Q forward >−< Q backward >= −0.0084±0.0015 (stat.) ±0.0004 (exp. sys.). In the framework of the standard model this can be interpreted as a measurement of the effective electroweak mixing angle, sin 2 O w ( M z 2 =0.2300±0.0034 (stat.) ±0.0010 (exp. sys.) ±0.0038 (theor. sys.) or of the ratio of the vector to axual- vector coupling costants of the electron, g ve g Ae =+0.073±0.024.

1 data table match query

No description provided.


Improved measurements of electroweak parameters from Z decays into fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 53 (1992) 1-20, 1992.
Inspire Record 317141 DOI 10.17182/hepdata.14857

The properties of theZ resonance are measured on the basis of 190 000Z decays into fermion pairs collected with the ALEPH detector at LEP. Assuming lepton universality,Mz=(91.182±0.009exp±0.020L∶P) GeV,ГZ=(2484±17) MeV, σhad0=(41.44±0.36) nb, andГjad/Гℓℓ=21.00±0.20. The corresponding number of light neutrino species is 2.97±0.07. The forward-back-ward asymmetry in leptonic decays is used to determine the ratio of vector to axial-vector coupling constants of leptons:gv2(MZ2)/gA2(MZ2)=0.0072±0.0027. Combining these results with ALEPH results on quark charge and\(b\bar b\) asymmetries, and τ polarization, sin2θW(MZ2). In the contex of the Minimal Standard Model, limits are placed on the top-quark mass.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of electroweak parameters from hadronic and leptonic decays of the Z0

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 51 (1991) 179-204, 1991.
Inspire Record 314418 DOI 10.17182/hepdata.14940

From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).

6 data tables match query

Asymmetry determined from the number of events in the forward and backward hemisphere. Estimated systematic error is 0.005.

Asymmetry determined using the maximum likelihood method. Estimated systematic error is 0.005.

Asymmetry determined from the number of events in the forward and backward hemisphere. Estimated systematic error is <0.01.

More…

Measurements of the line shape of the Z0 and determination of electroweak parameters from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 417 (1994) 3-57, 1994.
Inspire Record 372144 DOI 10.17182/hepdata.48413

During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.

12 data tables match query

E+ E- forward-backward asymmetries from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).

E+ E- forward-backward asymmetries from the 1991 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data). Additional systematic error, excluding luminosity, is 0.002.

E+ E- forward-backward asymmetries from the 1990 data set after t-channel subtraction with only the E- constraint by polar angle 44 to 136 degrees and accollinearity < 10 degrees. Additional systematic error, excluding luminosity, is 0.003 at the peak.

More…

Update of electroweak parameters from Z decays

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 60 (1993) 71-82, 1993.
Inspire Record 354298 DOI 10.17182/hepdata.47312

Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of theZ are determined to beMZ=(91.187±0.009) GeV, ΓZ=(2.501±0.012) GeV, σhad0=(41.60±0.27) nb, andRℓ=20.78±0.13. The corresponding number of light neutrino species isNν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons:gV2(MZ2)/gA2(MZ2)=0.0052±0.0016. Combining this with ALEPH measurements of theb andc quark asymmetries and τ polarization gives sin2θWeff=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements ofMW/MZ fromp\(\bar p\) colliders and neutrino-nucleon scattering, the mass of the top quark is\(M_{top} = 156 \pm \begin{array}{*{20}c} {22} \\ {25} \\ \end{array} \pm \begin{array}{*{20}c} {17} \\ {22Higgs} \\ \end{array} \) GeV.

3 data tables match query

Data for 1991 running period.

Data for 1991 running period.

Data for 1991 running period.


Measurement of cross-sections and leptonic forward - backward asymmetries at the z pole and determination of electroweak parameters

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Z.Phys.C 62 (1994) 551-576, 1994.
Inspire Record 374696 DOI 10.17182/hepdata.48198

We report on the measurement of the leptonic and hadronic cross sections and leptonic forward-backward asymmetries at theZ peak with the L3 detector at LEP. The total luminosity of 40.8 pb−1 collected

12 data tables match query

Results from 1990 data. Additional systematic uncertainty of 0.005.. Acollinearity required to be <15 degrees.

Results from 1991 data. Additional systematic uncertainty of 0.002.. Acollinearity required to be <15 degrees.

Results from 1992 data. Additional systematic uncertainty of 0.002.. Acollinearity required to be <15 degrees.

More…

Experimental Study of Electroweak Parameters at {PETRA} Energies (12-{GeV} $< E_{CMS} <$ 36.7-{GeV})

The MARK-J collaboration Barber, D.P. ; Becker, U. ; Bei, G.D. ; et al.
Phys.Rev.Lett. 46 (1981) 1663, 1981.
Inspire Record 164675 DOI 10.17182/hepdata.3303

We have performed a high-statistics measurement of Bhabha scattering and of the production of hadrons in electron-positron annihilation at PETRA energies (12 GeV<~s<~36.7 GeV). Combining the results with measurements of μ+μ− and τ+τ− production enables us to compare our results with electroweak theory. We find sin2θw=0.27±0.08. This is in good agreement with the value obtained from neutrino experiments which were carried out in entirely different kinematic regions.

1 data table match query

No description provided.