Measurement of the inclusive leptonic asymmetry in top-quark pairs that decay to two charged leptons at CDF

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.Lett. 113 (2014) 042001, 2014.
Inspire Record 1290358 DOI 10.17182/hepdata.64422

We measure the inclusive forward-backward asymmetry of the charged-lepton pseudorapidities from top-quark pairs produced in proton-antiproton collisions, and decaying to final states that contain two charged leptons (electrons or muons), using data collected with the Collider Detector at Fermilab. With an integrated luminosity of 9.1 $\rm{fb}^{-1}$, the leptonic forward-backward asymmetry, $A_{\text{FB}}^{\ell}$, is measured to be $0.072 \pm 0.060$ and the leptonic pair forward-backward asymmetry, $A_{\text{FB}}^{\ell\ell}$, is measured to be $0.076 \pm 0.082$, compared with the standard model predictions of $A_{\text{FB}}^{\ell} = 0.038 \pm 0.003$ and $A_{\text{FB}}^{\ell\ell} = 0.048 \pm 0.004$, respectively. Additionally, we combine the $A_{\text{FB}}^{\ell}$ result with a previous determination from a final state with a single lepton and hadronic jets and obtain $A_{\text{FB}}^{\ell} = 0.090^{+0.028}_{-0.026}$.

3 data tables match query

The leptonic forward-backward asymmetry.

The leptonic pair forward-backward asymmetry.

The leptonic forward-backward asymmetry calculated as the combination of the current asymmetry measurement and a previous CDF measurement.


Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112003, 2016.
Inspire Record 1416824 DOI 10.17182/hepdata.77045

We report a measurement of the forward-backward asymmetry, $A_{FB}$, in $b\bar{b}$ pairs produced in proton-antiproton collisions and identified by muons from semileptonic $b$-hadron decays. The event sample was collected at a center-of-mass energy of $\sqrt{s}=1.96$ TeV with the CDF II detector and corresponds to 6.9 fb$^{-1}$ of integrated luminosity. We obtain an integrated asymmetry of $A_{FB}(b\bar{b})=(1.2 \pm 0.7)$\% at the particle level for $b$-quark pairs with invariant mass, $m_{b\bar{b}}$, down to $40$ GeV/$c^2$ and measure the dependence of $A_{FB}(b\bar{b})$ on $m_{b\bar{b}}$. The results are compatible with expectations from the standard model.

1 data table match query

Results of the $A_{\rm{FB}}$ measurements as functions of $b\bar{b}$ invariant mass. The integral values for each bin are shown.


First measurement of the forward-backward asymmetry in bottom-quark pair production at high mass

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 92 (2015) 032006, 2015.
Inspire Record 1364882 DOI 10.17182/hepdata.73682

We measure the particle-level forward-backward production asymmetry in $b\bar{b}$ pairs with masses $m(b\bar{b})$ larger than 150 GeV/$c^2$, using events with hadronic jets and employing jet charge to distinguish $b$ from $\bar{b}$. The measurement uses 9.5/fb of ppbar collisions at a center of mass energy of 1.96 TeV recorded by the CDF II detector. The asymmetry as a function of $m(b\bar{b})$ is consistent with zero, as well as with the predictions of the standard model. The measurement disfavors a simple model including an axigluon with a mass of 200 GeV/$c^2$ whereas a model containing a heavier 345 GeV/$c^2$ axigluon is not excluded.

1 data table match query

Values of maximum a posteriori signal asymmetry as a function of $b\bar{b}$ mass. The error bars represent the 68% credible intervals.


Measurement of the forward-backward asymmetry of top-quark and antiquark pairs using the full CDF Run II data set

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112005, 2016.
Inspire Record 1424841 DOI 10.17182/hepdata.77054

We measure the forward--backward asymmetry of the production of top quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy $\sqrt{s} = 1.96~\mathrm{TeV}$ using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of $9.1~\rm{fb}^{-1}$. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks ($\Delta y$), and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be $A_{\text{FB}}^{t\bar{t}} = 0.12 \pm 0.13$, consistent with the expectations from the standard-model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive $A_{\text{FB}}^{t\bar{t}}$ in both final states yields $A_{\text{FB}}^{t\bar{t}}=0.160\pm0.045$, which is consistent with the SM predictions. We also measure the differential asymmetry as a function of $\Delta y$. A linear fit to $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$, assuming zero asymmetry at $\Delta y=0$, yields a slope of $\alpha=0.14\pm0.15$, consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$ in the two final states is $\alpha=0.227\pm0.057$, which is $2.0\sigma$ larger than the SM prediction.

2 data tables match query

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the lepton+jets final state.

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the dilepton final state.


Azimuthal transverse single-spin asymmetries of inclusive jets and identified hadrons within jets from polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.D 106 (2022) 072010, 2022.
Inspire Record 2087127 DOI 10.17182/hepdata.130778

The STAR Collaboration reports measurements of the transverse single-spin asymmetries, $A_N$, for inclusive jets and identified `hadrons within jets' production at midrapidity from transversely polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV, based on data recorded in 2012 and 2015. The inclusive jet asymmetry measurements include $A_N$ for inclusive jets and $A_N$ for jets containing a charged pion carrying a momentum fraction $z>0.3$ of the jet momentum. The identified hadron within jet asymmetry measurements include the Collins effect for charged pions, kaons and protons, and the Collins-like effect for charged pions. The measured asymmetries are determined for several distinct kinematic regions, characterized by the jet transverse momentum $p_{T}$ and pseudorapidity $\eta$, as well as the hadron momentum fraction $z$ and momentum transverse to the jet axis $j_{T}$. These results probe higher momentum scales ($Q^{2}$ up to $\sim$ 900 GeV$^{2}$) than current, semi-inclusive deep inelastic scattering measurements, and they provide new constraints on quark transversity in the proton and enable tests of evolution, universality and factorization breaking in the transverse-momentum-dependent formalism.

124 data tables match query

Inclusive jet asymmetries, $A_{UT}^{\sin(\phi_{S})}$, as a function of particle jet-$p_{T}$. The bars show the statistical uncertainties, while the size of the boxes represents the systematic uncertainties on $A_{UT}^{\sin(\phi_{S})}$ (vertical) and jet-$p_{T}$ (horizontal). The top panel shows results for jets that scatter forward relative to the polarized beam ($x_{F} > 0$).

Inclusive jet asymmetries, $A_{UT}^{\sin(\phi_{S})}$, as a function of particle jet-$p_{T}$. The bars show the statistical uncertainties, while the size of the boxes represents the systematic uncertainties on $A_{UT}^{\sin(\phi_{S})}$ (vertical) and jet-$p_{T}$ (horizontal). the bottom panel shows jets that scatter backward to the polarized beam ($x_{F} < 0$).

Inclusive jet asymmetries, $A_{UT}^{\sin(\phi_{S})}$, as a function of particle jet-$p_{T}$ for jets that contain a charged pion with $z > 0.3$. The blue circles are for jets containing a high-$z$ $\pi^{+}$, while red squares are for jets containing a high-$z$ $\pi^{-}$.

More…

Indirect measurement of $\sin^2 \theta_W$ (or $M_W$) using $\mu^+\mu^-$ pairs from $\gamma^*/Z$ bosons produced in $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 89 (2014) 072005, 2014.
Inspire Record 1280719 DOI 10.17182/hepdata.64738

Drell-Yan lepton pairs are produced in the process $p\bar{p} \rightarrow \mu^+\mu^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $\mu^-$ as a function of the invariant mass of the $\mu^+\mu^-$ pair is used to obtain the effective leptonic determination $\sin^2 \theta^{lept}_{eff}$ of the electroweak-mixing parameter $\sin^2 \theta_W$, from which the value of $\sin^2 \theta_W$ is derived assuming the standard model. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.2 fb-1 of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2 \theta^{lept}_{eff}$ is found to be 0.2315 +- 0.0010, where statistical and systematic uncertainties are combined in quadrature. When interpreted within the context of the standard model using the on-shell renormalization scheme, where $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$, the measurement yields $\sin^2 \theta_W$ = 0.2233 +- 0.0009, or equivalently a W-boson mass of 80.365 +- 0.047 GeV/c^2. The value of the W-boson mass is in agreement with previous determinations in electron-positron collisions and at the Tevatron collider.

1 data table match query

The fully corrected measurement of ASYM(FB) as a function of the muon-pair invariant mass.


Measurement of $\sin^2\theta^{\rm lept}_{\rm eff}$ using $e^+e^-$ pairs from $\gamma^*/Z$ bosons produced in $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112016, 2016.
Inspire Record 1456804 DOI 10.17182/hepdata.78542

At the Fermilab Tevatron proton-antiproton ($p\bar{p}$) collider, Drell-Yan lepton pairs are produced in the process $p \bar{p} \rightarrow e^+e^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $e^-$ as a function of the $e^+e^-$-pair mass is used to obtain $\sin^2\theta^{\rm lept}_{\rm eff}$, the effective leptonic determination of the electroweak-mixing parameter $\sin^2\theta_W$. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.4~fb$^{-1}$ of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2\theta^{\rm lept}_{\rm eff}$ is found to be $0.23248 \pm 0.00053$. The combination with the previous CDF measurement based on $\mu^+\mu^-$ pairs yields $\sin^2\theta^{\rm lept}_{\rm eff} = 0.23221 \pm 0.00046$. This result, when interpreted within the specified context of the standard model assuming $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$ and that the $W$- and $Z$-boson masses are on-shell, yields $\sin^2\theta_W = 0.22400 \pm 0.00045$, or equivalently a $W$-boson mass of $80.328 \pm 0.024 \;{\rm GeV}/c^2$.

1 data table match query

Fully corrected $A_{fb}$ measurement for electron pairs with $|y|<1.7$. The measurement uncertainties are bin-by-bin unfolding estimates.


Measurement of the charge asymmetry in highly boosted top-quark pair production in $\sqrt{s} =$ 8 TeV $pp$ collision data collected by the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 756 (2016) 52-71, 2016.
Inspire Record 1410588 DOI 10.17182/hepdata.77021

In the $pp \rightarrow t\bar{t}$ process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} =$ 8 TeV collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair ($m_{t\bar{t}} > $ 0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within $-$2 $ < |y_t| - |y_{\bar{t}}| <$ 2 is measured to be 4.2 $\pm$ 3.2%, in agreement with the Standard Model prediction at next-to-leading order. A differential measurement in three $t\bar{t}$ mass bins is also presented.

1 data table match query

The measured charge asymmetry after the unfolding to parton level in four intervals of the invariant mass of the $t\bar{t}$ system. The phase space is limited to $|(\Delta |y|)|<$ 2. The uncertainties correspond to the sum in quadrature of statistical and systematic uncertainties (for the data) or to the theory uncertainty (for the SM prediction).


Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in $pp$ collision data at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 87, 2016.
Inspire Record 1392455 DOI 10.17182/hepdata.75528

This paper reports inclusive and differential measurements of the $t\bar{t}$ charge asymmetry $A_{\textrm{C}}$ in 20.3 fb$^{-1}$ of $\sqrt{s} = 8$ TeV $pp$ collisions recorded by the ATLAS experiment at the Large Hadron Collider at CERN. Three differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. The $t\bar{t}$ pairs are selected in the single-lepton channels ($e$ or $\mu$) with at least four jets, and a likelihood fit is used to reconstruct the $t\bar{t}$ event kinematics. A Bayesian unfolding procedure is performed to infer the asymmetry at parton level from the observed data distribution. The inclusive $t\bar{t}$ charge asymmetry is measured to be $A_{\textrm{C}} = 0.009 \pm 0.005$ (stat.$+$syst.). The inclusive and differential measurements are compatible with the values predicted by the Standard Model.

7 data tables match query

The inclusive $t\bar{t}$ production charge asymmetry, $A_C$, with statistical and systematic uncertainties combined.

Measured charge asymmetry, $A_C$, values for the electron and muon channels combined after unfolding as a function of the $t\bar{t}$ invariant mass, $m_{t\bar{t}}$. The quoted uncertainties include statistical and systematic components after the marginalisation.

Measured charge asymmetry, $A_C$, values for the electron and muon channels combined after unfolding as a function of the $t\bar{t}$ velocity along the z-axis, $\beta_{z,t\bar{t}}$. The quoted uncertainties include statistical and systematic components after the marginalisation.

More…

Measurement of the Lepton Forward-Backward Asymmetry in Inclusive $B \rightarrow X_s \ell^+ \ell^-$ Decays

The Belle collaboration Sato, Y. ; Ishikawa, A. ; Yamamoto, H. ; et al.
Phys.Rev.D 93 (2016) 032008, 2016.
Inspire Record 1283183 DOI 10.17182/hepdata.64698

We report the first measurement of the lepton forward-backward asymmetry ${\cal A}_{\rm FB}$ as a function of the squared four-momentum of the dilepton system, $q^2$, for the electroweak penguin process $B \rightarrow X_s \ell^+ \ell^-$ with a sum of exclusive final states, where $\ell$ is an electron or a muon and $X_s$ is a hadronic recoil system with an $s$ quark. The results are based on a data sample containing $772\times10^6$ $B\bar{B}$ pairs recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. ${\cal A}_{\rm FB}$ for the inclusive $B \rightarrow X_s \ell^+ \ell^-$ is extrapolated from the sum of 10 exclusive $X_s$ states whose invariant mass is less than 2 GeV/$c^2$. For $q^2 > 10.2$ GeV$^2$/$c^2$, ${\cal A}_{\rm FB} < 0$ is excluded at the 2.3$\sigma$ level, where $\sigma$ is the standard deviation. For $q^2 < 4.3$ GeV$^2$/$c^2$, the result is within 1.8$\sigma$ of the Standard Model theoretical expectation.

1 data table match query

The value of ASYM(FB) obtained from the fit in each of the four Q**2 bins.


Transverse single spin asymmetries of forward neutrons in $p+p$, $p+$Al and $p+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV as a function of transverse and longitudinal momenta

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 105 (2022) 032004, 2022.
Inspire Record 1944868 DOI 10.17182/hepdata.131759

In 2015 the PHENIX collaboration at the Relativistic Heavy Ion Collider recorded $p+p$, $p+$Al, and $p+$Au collision data at center of mass energies of $\sqrt{s_{_{NN}}}=200$ GeV with the proton beam(s) transversely polarized. At very forward rapidities $\eta>6.8$ relative to the polarized proton beam, neutrons were detected either inclusively or in (anti)correlation with detector activity related to hard collisions. The resulting single spin asymmetries, that were previously reported, have now been extracted as a function of the transverse momentum of the neutron as well as its longitudinal momentum fraction $x_F$. The explicit kinematic dependence, combined with the correlation information allows for a closer look at the interplay of different mechanisms suggested to describe these asymmetries, such as hadronic interactions or electromagnetic interactions in ultra-peripheral collisions, UPC. Events that are correlated with a hard collision indeed display a mostly negative asymmetry that increases in magnitude as a function of transverse momentum with only little dependence on $x_F$. In contrast, events that are not likely to have emerged from a hard collision display positive asymmetries for the nuclear collisions with a kinematic dependence that resembles that of a UPC based model. Because the UPC interaction depends strongly on the charge of the nucleus, those effects are very small for $p+p$ collisions, moderate for $p+$Al collisions, and large for $p+$Au collisions.

8 data tables match query

Measured forward neutron single spin asymmetries in p+p collisions as a function of pT in bins of xF

Measured forward neutron single spin asymmetries in p+Al collisions as a function of pT in bins of xF

Measured forward neutron single spin asymmetries in p+Au collisions as a function of pT in bins of xF

More…

Transverse-single-spin asymmetries of charged pions at midrapidity in transversely polarized $p{+}p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 105 (2022) 032003, 2022.
Inspire Record 1988071 DOI 10.17182/hepdata.129284

In 2015, the PHENIX collaboration has measured single-spin asymmetries for charged pions in transversely polarized proton-proton collisions at the center of mass energy of $\sqrt{s}=200$ GeV. The pions were detected at central rapidities of $|\eta|<0.35$. The single-spin asymmetries are consistent with zero for each charge individually, as well as consistent with the previously published neutral-pion asymmetries in the same rapidity range. However, they show a slight indication of charge-dependent differences which may suggest a flavor dependence in the underlying mechanisms that create these asymmetries.

1 data table match query

Measured charged pion single spin asymmetries in p+p collisions as a function of pT


Transverse momentum dependent forward neutron single spin asymmetries in transversely polarized $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 103 (2021) 032007, 2021.
Inspire Record 1834002 DOI 10.17182/hepdata.106656

In 2015, the PHENIX collaboration has measured very forward ($\eta>6.8$) single-spin asymmetries of inclusive neutrons in transversely polarized proton-proton and proton-nucleus collisions at a center of mass energy of 200 GeV. A previous publication from this data set concentrated on the nuclear dependence of such asymmetries. In this measurement the explicit transverse-momentum dependence of inclusive neutron single spin asymmetries for proton-proton collisions is extracted using a bootstrapping-unfolding technique on the transverse momenta. This explicit transverse-momentum dependence will help improve the understanding of the mechanisms that create these asymmetries.

4 data tables match query

Measured and unfolded forward neutron single spin asymmetries using 3rd order polynomial parameterization in unfolding

Measured and unfolded forward neutron single spin asymmetries using a Power law parameterization in unfolding

Measured and unfolded forward neutron single spin asymmetries using an exponential parameterization in unfolding

More…

Improving constraints on gluon spin-momentum correlations in transversely polarized protons via midrapidity open-heavy-flavor electrons in $p^{\uparrow}+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 107 (2023) 052012, 2023.
Inspire Record 2072832 DOI 10.17182/hepdata.130883

Polarized proton-proton collisions provide leading-order access to gluons, presenting an opportunity to constrain gluon spin-momentum correlations within transversely polarized protons and enhance our understanding of the three-dimensional structure of the proton. Midrapidity open-heavy-flavor production at $\sqrt{s}=200$ GeV is dominated by gluon-gluon fusion, providing heightened sensitivity to gluon dynamics relative to other production channels. Transverse single-spin asymmetries of positrons and electrons from heavy-flavor hadron decays are measured at midrapidity using the PHENIX detector at the Relativistic Heavy Ion Collider. These charge-separated measurements are sensitive to gluon correlators that can in principle be related to gluon orbital angular momentum via model calculations. Explicit constraints on gluon correlators are extracted for two separate models, one of which had not been constrained previously.

1 data table match query

Data from Figure 1 of open heavy flavor $e^{\pm}$ transverse single-spin asymmetries in transversely polarized p+p collisions as a function of $p_{T}$.


Transverse single-spin asymmetry of midrapidity $\pi^{0}$ and $\eta$ mesons in $p$+Au and $p$+Al collisions at $\sqrt{s_{_{NN}}}=$ 200 GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 107 (2023) 112004, 2023.
Inspire Record 2641468 DOI 10.17182/hepdata.139098

Presented are the first measurements of the transverse single-spin asymmetries ($A_N$) for neutral pions and eta mesons in $p$+Au and $p$+Al collisions at $\sqrt{s_{_{NN}}}=200$ GeV in the pseudorapidity range $|\eta|<$0.35 with the PHENIX detector at the Relativistic Heavy Ion Collider. The asymmetries are consistent with zero, similar to those for midrapidity neutral pions and eta mesons produced in $p$+$p$ collisions. These measurements show no evidence of additional effects that could potentially arise from the more complex partonic environment present in proton-nucleus collisions.

2 data tables match query

Data from Figure 2 (a) of the $\pi^{0}$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.

Data from Figure 2 (b) of the $\eta$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.


Measurement of forward - backward charge asymmetry in the process of b quark production in e+ e- annihilation around s**(1/2) = 60-GeV

The VENUS collaboration Shirakata, M. ; Utsumi, M. ; Abe, K. ; et al.
Phys.Lett.B 278 (1992) 499-505, 1992.
Inspire Record 322085 DOI 10.17182/hepdata.29242

We have measured the forward-backward charge asymmetry in the process of b-quark production in e + e − annihilation at TRISTAN. It was made possible by detecting prompt leptons from b-quarks. The obtained asymmetry is A = −0.55±0.15±0.08. If corrected for B-meson mixing effects with the assumptions given in the text, the asymmetry becomes A = f −0.78±0.21±0.11, which is consistent with the prediction of the standard model, namely the assignment of the b-quark to the isospin doublet of the third quark generation.

2 data tables match query

Data uncorrected for meson mixing effects.

Data corrected for meson mixing effects.


Measurement of parity-violating spin asymmetries in W$^{\pm}$ production at midrapidity in longitudinally polarized $p$$+$$p$ collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 93 (2016) 051103, 2016.
Inspire Record 1365091 DOI 10.17182/hepdata.73691

We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.

1 data table match query

Longitudinal single-spin asymmetries, $A_L$, for the 2011 and 2012 data sets (combined) spanning the entire $\eta$ range of PHENIX ($\left|\eta\right|<0.35$), for the 2013 data set separated into two $\eta$ bins, and for the combined 2011-2013 data sets.


Search for leptonic charge asymmetry in $t\bar{t}W$ production in final states with three leptons at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 033, 2023.
Inspire Record 2622249 DOI 10.17182/hepdata.140938

A search for the leptonic charge asymmetry ($A_\text{c}^{\ell}$) of top-quark$-$antiquark pair production in association with a $W$ boson ($t\bar{t}W$) is presented. The search is performed using final states with exactly three charged light leptons (electrons or muons) and is based on $\sqrt{s} = 13$ TeV proton$-$proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN during the years 2015$-$2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. A profile-likelihood fit to the event yields in multiple regions corresponding to positive and negative differences between the pseudorapidities of the charged leptons from top-quark and top-antiquark decays is used to extract the charge asymmetry. At reconstruction level, the asymmetry is found to be $-0.123 \pm 0.136$ (stat.) $\pm \, 0.051$ (syst.). An unfolding procedure is applied to convert the result at reconstruction level into a charge-asymmetry value in a fiducial volume at particle level with the result of $-0.112 \pm 0.170$ (stat.) $\pm \, 0.054$ (syst.). The Standard Model expectations for these two observables are calculated using Monte Carlo simulations with next-to-leading-order plus parton shower precision in quantum chromodynamics and including next-to-leading-order electroweak corrections. They are $-0.084 \, ^{+0.005}_{-0.003}$ (scale) $\pm\, 0.006$ (MC stat.) and $-0.063 \, ^{+0.007}_{-0.004}$ (scale) $\pm\, 0.004$ (MC stat.) respectively, and in agreement with the measurements.

1 data table match query

Measured values of the leptonic charge asymmetry ($A_c^{\ell}$) in ttW production in the three lepton channel. Results are given at reconstruction level and at particle level. Expected values are obtained using the Sherpa MC generator.


Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 383-389, 2012.
Inspire Record 1115721 DOI 10.17182/hepdata.59737

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003<x<0.7. The new measurements have small statistical and systematic uncertainties of a few percent and confirm with considerably better accuracy the previous COMPASS measurement. The Sivers asymmetry is found to be compatible with zero for negative hadrons and positive for positive hadrons, a clear indication of a spin-orbit coupling of quarks in a transversely polarised proton. As compared to measurements at lower energy, a smaller Sivers asymmetry for positive hadrons is found in the region x > 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong dependence on the four-momentum transfer to the nucleon, in agreement with the most recent calculations.

54 data tables match query

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

More…

Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 376-382, 2012.
Inspire Record 1115720 DOI 10.17182/hepdata.59732

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Collins asymmetry of the proton was extracted in the Bjorken x range 0.003<x<0.7. These new measurements confirm with higher accuracy previous measurements from the COMPASS and HERMES collaborations, which exhibit a definite effect in the valence quark region. The asymmetries for negative and positive hadrons are similar in magnitude and opposite in sign. They are compatible with model calculations in which the u-quark transversity is opposite in sign and somewhat larger than the d-quark transversity distribution function. The asymmetry is extracted as a function of Bjorken $x$, the relative hadron energy $z$ and the hadron transverse momentum p_T^h. The high statistics and quality of the data also allow for more detailed investigations of the dependence on the kinematic variables. These studies confirm the leading-twist nature of the Collins asymmetry.

54 data tables match query

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

More…

Transverse target spin asymmetries in exclusive $\rho^0$ muoproduction

The COMPASS collaboration Adolph, C ; Alekseev, M G ; Alexakhin, V Yu ; et al.
Phys.Lett.B 731 (2014) 19-26, 2014.
Inspire Record 1257385 DOI 10.17182/hepdata.66743

Exclusive production of $\rho^0$ mesons was studied at the COMPASS experiment by scattering 160 GeV/$c$ muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured as a function of $Q^2$, $x_{Bj}$, or $p_{T}^{2}$. The $\sin \phi_S$ asymmetry is found to be $-0.019 \pm 0.008(stat.) \pm 0.003(syst.)$. All other asymmetries are also found to be of small magnitude and consistent with zero within experimental uncertainties. Very recent calculations using a GPD-based model agree well with the present results. The data is interpreted as evidence for the existence of chiral-odd, transverse generalized parton distributions.

6 data tables match query

Single-spin azimuthal asymmetries for a transversely (T) polarised target and unpolarised (U) beam.

Single-spin azimuthal asymmetries for a transversely (T) polarised target and unpolarised (U) beam.

Single-spin azimuthal asymmetries for a transversely (T) polarised target and unpolarised (U) beam.

More…

Forward - backward charge asymmetry of quark pairs produced at the KEK TRISTAN e+ e- collider

The AMY collaboration Stuart, D. ; Breedon, R.E. ; Chinitz, L.M. ; et al.
Phys.Rev.D 49 (1994) 3098-3105, 1994.
Inspire Record 378569 DOI 10.17182/hepdata.22552

We report on a measurement of the forward-backward charge asymmetry in e+e−→qq¯ at KEK TRISTAN, where the asymmetry is near maximum. We sum over all flavors and measure the asymmetry by determining the charge of the quark jets. In addition we exploit flavor dependencies in the jet charge determination to enhance the contributions of certain flavors. This provides a check on the asymmetries of individual flavors. The measurement agrees with the standard model expectations.

1 data table match query

Forward--backward asymmetry summed over all flavours of quarks.


Energy Dependence of the Charge Asymmetry a ($T (\pi$), $\theta$) in $\pi d$ Elastic Scattering

Smith, G.R. ; Gill, D.R. ; Ottewell, D. ; et al.
Phys.Rev.C 38 (1988) 240-250, 1988.
Inspire Record 250814 DOI 10.17182/hepdata.26223

Angular distributions of charge asymmetry A(Tπ,θ), have been measured for πd elastic scattering. Data were obtained in the backward hemisphere for pion bombarding energies of 143, 180, 220, and 256 MeV. The results are compared with predictions employing different mass and width parameters for the delta isobars.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of $\Z^0 \to b \bar{b}$ Decay Properties

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 241 (1990) 416-424, 1990.
Inspire Record 295040 DOI 10.17182/hepdata.29716

We have measured the properties of Z 0 → b b decays using a sample of 944 inclusive muon events, corresponding to 18 000 hadron events obtained with the L3 detector at LEP. We measured the partial decay width of the Z 0 into b b , Γ b b =353±48 MeV , and we determined the vector coupling of the Z 0 to the b quark; g rmv 2 (b)=0.095±0.047. We measured the forward-backward charge asymmetry in e + e − → b b events at √ s ≈ M v , and obtained A b b =13.3±9.9% .

1 data table match query

BOTTOM quark charge asymmetry measurement.


Inclusive Electron Production From Heavy Quarks in $e^+ e^-$ Annihilation at 34.6-{GeV} Center-of-mass Energy

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Phys.Lett.B 146 (1984) 443-449, 1984.
Inspire Record 202782 DOI 10.17182/hepdata.30507

The production of electrons by bottom and charm hadrons has been studied in e + e − annihilation at 34.6 GeV center of mass energy. It is observed that the b quark fragmentation function is peaked at large values of the scaling variable z with 〈 z b 〉 = 0.84 +0.15 + 0.15 −0.10 − 0.11 . For c quarks 〈 z c 〉 = 0.57 +0.10 + 0.05 −0.09 − 0.06 is observed. A forward-backward charge asymmetry of A = −0.25 ± 0.22 was measured in b production.

2 data tables match query

THE VALUE OF ASYMMETRY WAS DETERMINED USING A SAMPLE OF PROMPT ELECTRONS.

THE VALUE OF ASYMMETRY WAS DETERMINED USING A SAMPLE OF PROMPT ELECTRONS.