Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $\sqrt{s}=510$ GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.D 105 (2022) 092011, 2022.
Inspire Record 1949588 DOI 10.17182/hepdata.114778

We report measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for inclusive jet and dijet production in polarized proton-proton collisions at midrapidity and center-of-mass energy $\sqrt{s}$ = 510 GeV, using the high luminosity data sample collected by the STAR experiment in 2013. These measurements complement and improve the precision of previous STAR measurements at the same center-of-mass energy that probe the polarized gluon distribution function at partonic momentum fraction 0.015 $\lesssim x \lesssim$ 0.25. The dijet asymmetries are separated into four jet-pair topologies, which provide further constraints on the $x$ dependence of the polarized gluon distribution function. These measurements are in agreement with previous STAR measurements and with predictions from current next-to-leading order global analyses. They provide more precise data at low dijet invariant mass that will better constraint the shape of the polarized gluon distribution function of the proton.

5 data tables match query

Parton jet $p_T$ vs $A_{LL}$ values with associated uncertainties.

Parton dijet $M_{inv}$ vs $A_{LL}$ values with associated uncertainties, for topology A.

Parton dijet $M_{inv}$ vs $A_{LL}$ values with associated uncertainties, for topology B.

More…

Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.D 103 (2021) L091103, 2021.
Inspire Record 1850855 DOI 10.17182/hepdata.104836

We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s}=200\,\mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $\Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x \simeq 0.05$ to $x \simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $\Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $\sqrt{s}=200\,\mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $\Delta g(x,Q^2)$ is positive for $x > 0.05$.

5 data tables match query

Parton inclusive-jet $p_T$ and $A_{LL}$ values with associated uncertainties for jet-$\eta$ region $0.5<|\eta|<1$.

Parton inclusive-jet $p_T$ and $A_{LL}$ values with associated uncertainties for jet-$\eta$ region $|\eta|<0.5$.

Parton dijet invariant mass $M_{inv}$ and $A_{LL}$ values with associated uncertainties for the $\textrm{sign}(\eta_1) = \textrm{sign}(\eta_2)$ topology.

More…

Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at sqrt(S(NN) ) = 2.76 TeV with the ATLAS Detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 105 (2010) 252303, 2010.
Inspire Record 878733 DOI 10.17182/hepdata.63790

Using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in fine-grained, longitudinally-segmented electromagnetic and hadronic calorimeters. The underlying event is measured and subtracted event-by-event, giving estimates of jet transverse energy above the ambient background. The transverse energies of dijets in opposite hemispheres is observed to become systematically more unbalanced with increasing event centrality leading to a large number of events which contain highly asymmetric dijets. This is the first observation of an enhancement of events with such large dijet asymmetries, not observed in proton-proton collisions, and which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

2 data tables match query

Asymmetry in the different centrality regions for 2.76 TeV/Nucleon PB-PB collisions.

Asymmetry in 7 TeV P-P collisions.


Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 95 (2017) 071103, 2017.
Inspire Record 1493842 DOI 10.17182/hepdata.77208

We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.

4 data tables match query

Di-jet A_LL asymmetry vs parton-level invariant mass for the same-sign di-jet topology. The systematic uncertainty on the mass includes contributions from jet energy scale, the correction to parton-level, and the difference between NLO and PYTHIA cross sections. The systematic uncertainty on the asymmetry includes contributions from trigger and reconstruction bias and residual transverse beam polarization components. A 6.5% uncertainty common to all points due to uncertainty on the measured beam polarizations is also present, but not included in the uncertainties quoted below.

Theoretical predictions for the di-jet A_LL asymmetry for the same-sign topology using the DSSV14 and NNPDFpol1.1 polarized PDF sets. The DSSV14 prediction is presented without uncertainty while the systematic uncertainty on the NNPDFpol1.1 prediction contains contributions from factorization and renormalization scale uncertainties and PDF uncertainties.

Di-jet A_LL asymmetry vs parton-level invariant mass for the opposite-sign di-jet topology. The systematic uncertainty on the mass includes contributions from jet energy scale, the correction to parton-level, and the difference between NLO and PYTHIA cross sections. The systematic uncertainty on the asymmetry includes contributions from trigger and reconstruction bias and residual transverse beam polarization components. A 6.5% uncertainty common to all points due to uncertainty on the measured beam polarizations is also present, but not included in the uncertainties quoted below.

More…