The Forward - backward asymmetry of e+ e- ---> b anti-b and e+ e- ---> c anti-c using leptons in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Akers, R. ; Alexander, G. ; et al.
Z.Phys.C 60 (1993) 19-36, 1993.
Inspire Record 356097 DOI 10.17182/hepdata.14320

The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$

5 data tables match query

Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.

Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.

Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.

More…

A Measurement of the forward - backward charge asymmetry in hadronic decays of the Z0

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 294 (1992) 436-450, 1992.
Inspire Record 336774 DOI 10.17182/hepdata.29004

We present a measurement of the forward-backward charge asymmetry in hadronic decays of the Z 0 using data collected with the OPAL detector at LEP. The forward-backward charge asymmetry was measured using a weight function method which gave the number of forward events on a statistical basis. In a data sample of 448 942 hadronic Z 0 decays, we have observed a charge asymmetry of A h = 0.040±0.004 (stat.)±0.006 (syst.)±0.002 (B 0 B 0 mix.), taking into account the effect of B 0 B 0 mixing. In the framework of the standard model, this asymmetry corresponds to an effective weak mixing angle averaged over five quark flavours of sin 2 θ W = 0.2321 ± 0.0017 ( stat. ) ± 0.0027 ( syst. ) ± 0.0009 (B 0 B 0 mix.). The result agrees with the value obtained from the Z 0 line shape and lepton pair forward-backward asymmetry.

2 data tables match query

No description provided.

The second systematic error is due to the uncertainty in the correction for B.BBAR mixing which had been applied to the data.


Precision measurements of the neutral current from hadron and lepton production at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 58 (1993) 219-238, 1993.
Inspire Record 352696 DOI 10.17182/hepdata.14495

New measurements of the hadronic and leptonic cross sections and of the leptonic forward-backward asymmetries ine+e− collisions are presented. The analysis includes data recorded up to the end of 1991 by the OPAL experiment at LEP, with centre-of-mass energies within ±3 GeV of the Z0 mass. The results are based on a recorded total of 454 000 hadronic and 58 000 leptonic events. A model independent analysis of Z0 parameters based on an extension of the improved Born approximation is presented leading to test of lepton universality and an interpretation of the results within the Standard Model framework. The determination of the mass and width of the Z0 benefit from an improved understanding of the LEP energy calibration.

5 data tables match query

Additional systematic error of 0.003.

Forward-backward asymmetry from counting number of events. Additional systematic error of 0.003.

Forward-backward asymmetry from maximum likelihood fit to cos(theta) distribution. Additional systematic error of 0.003.

More…

A Measurement of the b anti-b forward backward asymmetry using the semileptonic decay into muons

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 276 (1992) 536-546, 1992.
Inspire Record 322498 DOI 10.17182/hepdata.29264

The forward-backward asymmetry of bottom quarks is measured with statistics of approximately 80 000 hadronic Z 0 decays produced in e + e − collisions at a centre of mass energy of √ s ≈ M z . The tagging of b quark events has been performed using the semileptonic decay channel b→X+ μ . Because the asymmetry depends on the weak coupling, this leads to a precise measurement of the electroweak mixing angle sin 2 θ w . The experimental result is A FB b = 0.115±0.043(stat.)±0.013(syst.). After correcting the value for the B 0 B 0 mixing this becomes A FB b =0.161±0.060(stat.)±0.021(syst.) corresponding to sin 2 θ W MS =0.221±0.011( stat. )±0.004( syst. ) .

2 data tables match query

Experimentally measured asymmetry.

Asymmetry corrected for mixing using mixing parameter 0.143 +- 0.023.


The Forward - backward asymmetry for charm quarks at the Z pole

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 352 (1995) 479-486, 1995.
Inspire Record 394753 DOI 10.17182/hepdata.47932

From 1.4 million hadronic Z decays collected by the ALEPH detector at LEP, an enriched sample of Z → cc̄ events is extracted by requiring the presence of a high momentum D ∗± . The charm quark forward-backward charge asymmetry at the Z pole is measured to be A FB 0. c = (8.0 ± 2.4) % corresponding to an effective electroweak mixing angle of sin 2 θ W eff = 0.2302 ± 0.0054.

2 data tables match query

Value of SIN2TW(eff) from CQ-quark asymmetries.

No description provided.


The forward-backward asymmetry for charm quarks at the Z.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Lett.B 434 (1998) 415-425, 1998.
Inspire Record 472954 DOI 10.17182/hepdata.49353

The data set collected with the ALEPH detector from 1991 to 1995 at LEP has been analysed to measure the charm forward-backward asymmetry at the Z. Out of a total of 4.1 million hadronic Z decays, about 36000 high momentum D*+, D+ and D0 decays were reconstructed, of which 80% originate from Z -> ccbar events...

1 data table match query

No description provided.


Determination of A(b)(FB) using jet charge measurements in Z decays.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Lett.B 426 (1998) 217-230, 1998.
Inspire Record 468671 DOI 10.17182/hepdata.49559

An improved measurement of the forward-backward asymmetry in Z →b b ̄ decays is presented, based on a sample of 4.1 million hadronic Z decays collected by ALEPH between 1991 and 1995. Data are analysed as a function of polar angle of the event axis and b purity. The event tagging efficiency and mean b -jet hemisphere charge are measured directly from data. From the measured forward-backward jet charge asymmetry, the b quark asymmetry at s =m Z is determined to be: A b FB =0.1017±0.0038(stat.)±0.0032(syst.). In the context of the Standard Model this corresponds to a value of the effective weak mixing angle of sin 2 θ W eff =0.23109±0.00096.

2 data tables match query

Only statistical errors are given for sqrt(s) = 89.43 and 92.97 GeV.

The combination of the data on and off peak of Z-boson.


A high-precision measurement of the left-right Z boson cross-section asymmetry.

The SLD collaboration Abe, Kenji ; Abe, Koya ; Abe, T. ; et al.
Phys.Rev.Lett. 84 (2000) 5945-5949, 2000.
Inspire Record 526448 DOI 10.17182/hepdata.35323

We present a measurement of the left-right cross-section asymmetry (ALR) for Z boson production by e+e- collisions. The measurement includes the final data taken with the SLD detector at the SLAC Linear Collider (SLC) during the period 1996-1998. Using a sample of 383,487 Z decays collected during the 1996-1998 runs we measure the pole-value of the asymmetry, ALR0, to be 0.15056+-0.00239 which is equivalent to an effective weak mixing angle of sin2th(eff) = 0.23107+-0.00030. Our result for the complete 1992-1998 dataset comprising 537 thousand Z decays is sin2th(eff) = 0.23097+-0.00027.

6 data tables match query

The observed, corrected asymmetry measurement using the 1997-98 data sets.

The observed, corrected asymmetry measurement using the 1996 data sets.

The pole asymmetry for the 1997-98 data sets.

More…

Precise Measurement of the Left-Right Cross Section Asymmetry in $Z$ Boson Production by $\ee$ Collisions

The SLD collaboration Abe, K. ; Abt, I. ; Ash, W.W. ; et al.
Phys.Rev.Lett. 73 (1994) 25-29, 1994.
Inspire Record 373007 DOI 10.17182/hepdata.19681

We present a precise measurement of the left-right cross section asymmetry ($A_{LR}$) for $Z$ boson production by $\ee$ collisions. The measurement was performed at a center-of-mass energy of 91.26 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (63.0$\pm$1.1)%. Using a sample of 49,392 $\z0$ decays, we measure $A_{LR}$ to be 0.1628$\pm$0.0071(stat.)$\pm$0.0028(syst.) which determines the effective weak mixing angle to be $\swein=0.2292\pm0.0009({\rm stat.})\pm0.0004({\rm syst.})$.}

2 data tables match query

The observed, corrected, asymmetry. L and R refer to the left and right handed beam polarizations.

The left-right asymmetry and effective weak mixing angle corrected to the pole energy value, taking into account photon exchange and electro weak interferences. L and R refer to left and right beam polarizations.


First measurement of the left-right cross-section asymmetry in Z boson production by e+ e- collisions

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 70 (1993) 2515-2520, 1993.
Inspire Record 352667 DOI 10.17182/hepdata.19765

We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).

1 data table match query

R and L refer to Right and Left handed beam polarization.