On Measuring Spin Rotation Parameter r in pi- p and K- p Elastic Scattering at 40-GeV/c

The Serpukhov-Saclay-Dubna-Moscow collaboration Pierrard, J. ; Bruneton, C. ; Bystricky, J. ; et al.
Phys.Lett.B 57 (1975) 393-397, 1975.
Inspire Record 99593 DOI 10.17182/hepdata.27839

The spin rotation parameter R has been measured for elastic π − p scattering at 40 GeV/ c , at four momentum transfers t ranging from −0.19 to −0.52 (GeV/ c ) 2 . The average value within this interval is R π − p = -0.200± 0.023. The resulting constraints on the πN scattering amplitudes are discussed. The experiments also yields an average value for K − p scattering, R K − p scattering, R K − p = -0.16±0.16.

2 data tables match query

Neutron - proton elastic scattering spin - spin correlation parameter. Measurements between 500 and 800 - MeV. 3. Mixtures of C(ss), C(ls), C(ll), and C(nn).

Carlson, V. ; Garnett, R. ; Hill, D. ; et al.
Phys.Rev.D 53 (1996) 3506-3533, 1996.
Inspire Record 404963 DOI 10.17182/hepdata.50927

Measurements are presented for several mixtures of the spin observables CSS,CSL=CLS, CLL, and CNN for neutron-proton elastic scattering. These data were obtained with a free polarized neutron beam, a polarized proton target, and a large magnetic spectrometer for the outgoing proton. The neutron beam kinetic energies were 484, 567, 634, 720, and 788 MeV. Combining these results with earlier measurements allows the determination of the pure spin observables CSS, CLS, and CLL at 484, 634, and 788 MeV for c.m. angles 25°≤θc.m.≤180° and at 720 MeV for 35°≤θc.m.≤80°. These data make a significant contribution to the knowledge of the isospin-0 nucleon-nucleon scattering amplitudes. © 1996 The American Physical Society.

19 data tables match query

Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

Results for the pure spin observables. Statistical errors only. The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

More…

Neutron proton elastic scattering spin spin correlation parameter measurements between 500-MeV and 800-Mev: 1. C(SL) and C(LL) at backward c.m. angles

Ditzler, W.R. ; Hill, D. ; Hoftiezer, J. ; et al.
Phys.Rev.D 46 (1992) 2792-2830, 1992.
Inspire Record 334079 DOI 10.17182/hepdata.22741

Final results are presented for the spin-spin correlation parameters CSL and CLL for np elastic scattering with a polarized neutron beam incident on a polarized proton target. The beam kinetic energies are 484, 634, and 788 MeV, and the c.m. angular range is 80°-180°. These data will contribute significantly to the determination of the isospin-0 amplitudes in the energy range from 500 to 800 MeV.

6 data tables match query

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

More…

Neutron - proton elastic scattering spin spin correlation parameter measurements between 500-MeV and 800-MeV. 2. C(SS) and C(LS) at forward cm angles

Shima, T. ; Hill, D. ; Johnson, K.F. ; et al.
Phys.Rev.D 47 (1993) 29-45, 1993.
Inspire Record 335383 DOI 10.17182/hepdata.22585

Results are presented for the spin-spin correlation parameters CSS and CLS for free np elastic scattering at neutron beam kinetic energies of 484, 634, 720, and 788 MeV and c.m. angles between 25° and 80°. The measurements were performed with a polarized neutron beam and a polarized proton target. These are the first measurements of this type to be reported in the forward angular region with a free polarized neutron beam. The observables CSS and CLS are both small at all energies, except for CLS at 788 MeV, which is larger than phase-shift analysis predictions by more than one standard deviation for most of the measured points.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of a Mixed Spin Spin Correlation Parameter for $n p$ Elastic Scattering

Garnett, R. ; Rawool, M. ; Carlson, V. ; et al.
Phys.Rev.D 40 (1989) 1708, 1989.
Inspire Record 25430 DOI 10.17182/hepdata.23054

The mixed spin-spin correlation parameter Cσσ≈0.5CSS−0.8CSL for np elastic scattering was measured for incident-neutron-beam kinetic energies of 484, 634, and 788 MeV over the center-of-mass angular range 75°-180°. These Cσσ data are important for determining the I=0 nucleon-nucleon amplitudes and provide strong constraints on the phase-shift solutions. It was found that the P11, S13, and D13 isospin-0 partial waves are most strongly affected.

3 data tables match query

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.475 * CSS + 0.088 CNN + 0.1390 CLL - 0.744 CSL.

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.506 * CSS + 0.064 CNN + 0.163 CLL - 0.809 CSL.

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.528 * CSS + 0.050 CNN + 0.178 CLL - 0.824 CSL.


Spin Correlation Parameter A(nn) ($\theta^*$) for $n p$ Elastic Scattering at 790-{MeV}

Nath, S. ; Glass, G. ; Hiebert, J.C. ; et al.
Phys.Rev.D 39 (1989) 3520, 1989.
Inspire Record 25429 DOI 10.17182/hepdata.23226

The spin-correlation parameter Ann for free n-p elastic scattering has been measured for the first time for incident-neutron-beam energy En=790 MeV and c.m. angles 48°≤θ*≤149°. The data are compared with the widely differing predictions of several phase-shift analyses, clearly favoring one of them. They also are compared with recently published quasifree Ann data for the more limited c.m. angular region 98°≲θ*≲122°.

1 data table match query

No description provided.


Measurement of spin observables in neutron proton elastic scattering. I: Correlation parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 67-81, 2000.
Inspire Record 537914 DOI 10.17182/hepdata.43392

The spin correlation parameters$A_{oonn}, A_{ooss}, A_{oosk}, A_{ookk}$and the analyzing power$A_{oono}$have been measured i

5 data tables match query

Measurement of the analysing power. Statistical errors only are shown. For the systematic errors see the systematics section above. Note that there are two overlapping angular settings.

Measurements of the spin correlation parameter CNN. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.

Measurements of the spin correlation parameter CLL. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.

More…

Measurement of spin observables in neutron proton elastic scattering. II: Rescattering parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 83-95, 2000.
Inspire Record 537915 DOI 10.17182/hepdata.43295

A double scattering experiment, performed at the Paul-Scherrer-Institut (PSI), has measured a large variety of spin observables for free np elastic scattering from 260 to 535 MeV in the c.m. angle ran

10 data tables match query

Measurements of DNN with statistical errors only.

Measurements of DSL with statistical errors only.

Measurements of DSS with statistical errors only.

More…

Spin observables in neutron proton elastic scattering.

Ahmidouch, A. ; Arnold, J. ; van den Brandt, B. ; et al.
Eur.Phys.J.C 2 (1998) 627-641, 1998.
Inspire Record 471273 DOI 10.17182/hepdata.11376

The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$

20 data tables match query

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

More…

THE ENERGY DEPENDENCE OF THE 90-degrees P P ELASTIC SCATTERING DEPOLARIZATION PARAMETER AND AMPLITUDES BETWEEN 0.9-GEV/C AND 1.5-GEV/C

Hollas, C.L. ; Cremans, D.J. ; Ransome, R.D. ; et al.
Phys.Lett.B 143 (1984) 343-346, 1984.
Inspire Record 208375 DOI 10.17182/hepdata.30531

The depolarization parameter D NN for pp elastic scattering at θ cm = 90 ° has been measured at twelve momenta between 0.9 and 1.5 GeV/ c . The moduli of the three transversity amplitudes T 1 , T 3 , and T 4 have been extracted from these data and from previous measurements of the differential cross section and spin correlation parameter A NN (90 °). Smooth energy dependence is found for all three amplitude moduli.

1 data table match query

Axis error includes +- 3/3 contribution (DUE TO UNCERTAINTIES IN THE TARGET ANALYSING POWER).