Analyzing power measurement of p p elastic scattering in the Coulomb - nuclear interference region with the 200-GeV/c polarized proton beam at Fermilab

The E581/704 collaboration Akchurin, N. ; Langland, J. ; Onel, Y. ; et al.
Phys.Rev.D 48 (1993) 3026-3036, 1993.
Inspire Record 364576 DOI 10.17182/hepdata.22670

The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.

1 data table match query

No description provided.


Polarization in pp Elastic Scattering at Large Momentum Transfers

Booth, N.E. ; Conforto, G. ; Esterling, R.J. ; et al.
Phys.Rev.Lett. 21 (1968) 651-652, 1968.
Inspire Record 944913 DOI 10.17182/hepdata.21669

Measurements of the polarization in pp elastic scattering have been made at 5.15 GeV/c over the range −t=0.2 to 1.8 (GeV/c)2. The data are compared with a Regge-pole model, and with the diffraction model of Durand and Lipes in which the absorptive part of the pp interaction is derived from the electromagnetic form factor of the proton. The latter model reproduces the t dependence of the experimental data in a qualitative way.

1 data table match query

Large angle elastic proton proton polarization at 5.15 gev/c

Abshire, G.W. ; Ankenbrandt, C.M. ; Crittenden, R.R. ; et al.
Phys.Rev.D 9 (1974) 555-559, 1974.
Inspire Record 93113 DOI 10.17182/hepdata.21953

We present herein the initial results of a large-angle elastic p−p polarization experiment which is now in progress at the Argonne ZGS (Zero-Gradient Synchrotron) accelerator. Data for the incident proton momentum of 5.15 GeVc are presented for 30∘≲θc.m.≲90∘. These results, which extend to t≈−4.0(GeVc)2, represent the first high-statistics p−p polarization measurements for |t| values greater than ∼2.5 (GeVc)2. We observe a minimum in the polarization near t=−0.8(GeVc)2, a smooth increase in the polarization until a maximum is attained near t=−1.8(GeVc)2, and then a monotonic decline in the polarization until the value of zero is reached at θc.m.=90∘. The data are analyzed in terms of an optical model.

1 data table match query

No description provided.


Measurements of the polarization in proton proton elastic scattering from 2.50 to 5.15 gev/c

Parry, J.H. ; Booth, N.E. ; Conforto, G. ; et al.
Phys.Rev.D 8 (1973) 45-63, 1973.
Inspire Record 81983 DOI 10.17182/hepdata.22058

In an experiment at the Argonne Zero-Gradient Synchrotron we have measured values of the polarization parameter P(t) in the elastic scattering of negative pions, positive pions, positive kaons, and protons on protons at several incident laboratory momenta from 2.50 to 5.15 GeVc, and for values of the momentum transfer variable −t from 0.2 to 2.0 (GeVc)2. The final results from p−p elastic scattering presented here extend our knowledge of the polarization to much larger values of −t than the results of previous measurements. Outstanding features revealed by these polarization data include (1) the development of a dip at about −t=0.7 (GeVc)2, with (2) a substantial secondary peak at larger values of −t and (3) the gradual diminution of the maximum polarization with increasing energy. It is possible to fit the t dependence of the experimental results with a simple model. The energy dependence of the polarized cross sections is also discussed.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…

Proton-proton spin correlation measurements at 200 MeV with an internal target in a storage ring

Haeberli, W. ; Lorentz, B. ; Rathmann, F. ; et al.
Phys.Rev.C 55 (1997) 597-613, 1997.
Inspire Record 464240 DOI 10.17182/hepdata.25711

Measurements of the pp spin correlation coefficients Axx, Ayy, and Axz and analyzing power Ay for pp elastic scattering at 197.8 MeV over the angular range 4.5°–17.5° have been carried out. The statistical accuracy is approximately ±0.01 for Amn and ±0.004 for Ay, while the corresponding scale factor uncertainties are 2.4% and 1.3%, respectively. The experiment makes use of a polarized hydrogen gas target internal to a proton storage ring (IUCF Cooler) and a circulating beam of polarized protons. The target polarization (Q=0.79) is switched in sign and in direction (x,y,z) every 2 s by reversing a weak guide field (about 0.3 mT). The forward-scattered protons are detected in two sets of wire chambers and a scintillator, while recoil protons are detected in coincidence with the forward protons by silicon strip detectors placed 5 cm from the proton beam. The background rate from scattering by the walls of the target cell is (0.2±0.2)% of the good event rate. Analysis methods and comparisons with pp potential models and pp partial wave analyses are described.

1 data table match query

No description provided.


Absolute measurement of the p+p analyzing power at 183 MeV

von Przewoski, B. ; Meyer, H.O. ; Pancella, P.V. ; et al.
Phys.Rev.C 44 (1991) 44-49, 1991.
Inspire Record 327386 DOI 10.17182/hepdata.26154

The analyzing power Ay for p+p elastic scattering at θlab=8.64°±0.07° (θcms=18.1°) and at a bombarding energy of 183.1±0.4 MeV has been determined to be Ay=0.2122±0.0017. The error includes statistics, systematic uncertainties, and the uncertainty in bombarding energy and angle. This measurement represents a calibration standard for polarized beams in this energy range. The absolute scale for the measurement has been obtained by comparison with p+C elastic scattering at the same energy at an angle where Ay is very nearly unity.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////).


Polarization Parameter in p-p Scattering from 1.7 to 6.1 BeV

Grannis, P. ; Arens, J. ; Betz, F. ; et al.
Phys.Rev. 148 (1966) 1297-1302, 1966.
Inspire Record 50914 DOI 10.17182/hepdata.26642

The polarization parameter in proton-proton scattering has been measured at incident proton kinetic energies of 1.7, 2.85, 3.5, 4.0, 5.05, and 6.15 BeV and for four-momentum transfer squared between 0.1 and 1.0 (BeV/c)2. The experiment was done with an unpolarized proton beam from the Bevatron striking a polarized proton target. Both final-state protons were detected in coincidence and the asymmetry in counting rate for target protons polarized parallel and antiparallel to the scattering normal was measured. The maximum polarization was observed to decrease from 0.4 at 1.7 BeV to 0.2 at 6.1 BeV. The maximum of the polarization at all energies studied occurs at a four-momentum transfer squared of 0.3 to 0.4 (BeV/c)2.

6 data tables match query
More…

A Measurement of the Polarization Parameter in Large Angle Proton Proton Elastic Scattering at 7.9-GeV/c

Aschman, D.G. ; Crabb, D.G. ; Green, K. ; et al.
Nucl.Phys.B 125 (1977) 349-368, 1977.
Inspire Record 125075 DOI 10.17182/hepdata.35322

The polarization parameter in proton-proton elastic scattering has been measured at an incident momentum of 7.9 GeV/ c and four-momentum transfers in the range 0.9 < | t | < 6.5 (GeV/ c ) 2 using a high intensity unpolarized proton beam incident on a polarized proton target. The angle and momentum of the forward scattered protons were measured with a magnet spectrometer and scintillation counter hodoscopes and the angle of the recoil proton was measured using similar hodoscopes. A clean separation between the elastic scattering from free hydrogen and that coming from inelastic interactions and from interactions with complex nuclei in the target was obtained. The polarization shows substantial structure rising from zero at | t | = 1.0 (GeV/ c ) 2 to a maximum at | t | = 1.7 (GeV/ c ) 2 and then falling to zero at | t | = 2.0 (GeV/ c ) 2 . There is evidence of a further peak at | t | = 2.8 (GeV/ c ) 2 . Above | t | = 3.25 (GeV/ c ) 2 the polarization is small and consistent with zero. A comparison of these data with data obtained at other beam momenta shows that the polarization parameter has a strong momentum dependence.

1 data table match query

No description provided.


Measurement of the Polarization Parameter in 24-GeV/c Proton Proton Elastic Scattering at Small Momentum Transfers

Crabb, D.G. ; Green, K. ; Kyberd, P. ; et al.
Nucl.Phys.B 121 (1977) 231-236, 1977.
Inspire Record 124254 DOI 10.17182/hepdata.35517

A measurement of the polarization parameter P 0 in pp elastic scattering has been made at 24 GeV/ c over the range | t | = 0.1 to 0.9 (GeV/ c ) 2 , positive, falling to zero around | t | = 0.8 (GeV/ c ) 2 . For the range 0.1 ⪕ |t| ⪕ 0.4 GeV /c) 2 , P 0 is constant at about 0.03.

1 data table match query

Axis error includes +- 5/5 contribution (SYS-ERR DUE MAINLY TO UNCERTAINTY IN KNOWLEDGE OF ABSOLUTE VALUE OF TARGET POLARIZATION).


The p p elastic scattering analyzing power measured with the polarized beam and the unpolarized target between 1.98-GeV and 2.80-GeV.

Allgower, C.E. ; Ball, J. ; Beddo, M. ; et al.
Nucl.Phys.A 637 (1998) 231-242, 1998.
Inspire Record 478006 DOI 10.17182/hepdata.36350

A polarized proton beam extracted from SATURNE II was scattered on an unpolarized CH 2 target. The angular distribution of the beam analyzing power A oono was measured at large angles from 1.98 to 2.8 GeV and at 0.80 GeV nominal beam kinetic energy. The same observable was determined at the fixed mean laboratory angle of 13.9° in the same energy range. Both measurements are by-products of an experiment measuring the spin correlation parameter A oon .

19 data tables match query

Analysing power measurements at a fixed laboratory angle of 13.9 degrees.

No description provided.

No description provided.

More…