$K^+$ nucleon elastic scattering at 180° between 1.0 and 1.5 GeV/c incident momentum

Adams, U. ; Carter, R.S. ; Cook, V. ; et al.
Nucl.Phys.B 87 (1975) 41-51, 1975.
Inspire Record 1392682 DOI 10.17182/hepdata.32061

We have measured the cross section at 180° for K + p and K + n elastic scattering in the momentum range 1.0 to 1.5 GeV/ c . The K + n cross section was measured on deuterium and the K + p on hydrogen and deuterium. We were thus able to measure directly the difference between free nucleon (proton) scattering and bound nucleon (proton) scattering at large angles. This difference was found to be small and within our experimental accuracy the K + p(n) cross section should be equal to the K + p (free) cross section at 180°. We found no evidence for an s -channel resonance Z ∗ in either the K + p or K + n system. A comparison of our data and those of other groups with theoretical predictions is given.

1 data table match query

HYDROGEN AND DEUTERIUM TARGET DATA ARE IN GOOD AGREEMENT. THESE CROSS SECTIONS ARE A WEIGHTED AVERAGE.


Evidence for Non-Exponential Elastic Proton-Proton Differential Cross-Section at Low |t| and sqrt(s) = 8 TeV by TOTEM

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
Nucl.Phys.B 899 (2015) 527-546, 2015.
Inspire Record 1356731 DOI 10.17182/hepdata.73431

The TOTEM experiment has made a precise measurement of the elastic proton-proton differential cross-section at the centre-of-mass energy sqrt(s) = 8 TeV based on a high-statistics data sample obtained with the beta* = 90 optics. Both the statistical and systematic uncertainties remain below 1%, except for the t-independent contribution from the overall normalisation. This unprecedented precision allows to exclude a purely exponential differential cross-section in the range of four-momentum transfer squared 0.027 < |t| < 0.2 GeV^2 with a significance greater than 7 sigma. Two extended parametrisations, with quadratic and cubic polynomials in the exponent, are shown to be well compatible with the data. Using them for the differential cross-section extrapolation to t = 0, and further applying the optical theorem, yields total cross-section estimates of (101.5 +- 2.1) mb and (101.9 +- 2.1) mb, respectively, in agreement with previous TOTEM measurements.

1 data table match query

The elastic differential cross-section as determined in this analysis using the ''optimised'' binning.


Elastic scattering $\pi^{+} + p$ at 1.0 GeV

Bidan, U. ; Waloschek, P. ; Lévy, F. ; et al.
Nuovo Cim. 24 (1962) 334-342, 1962.
Inspire Record 1185006 DOI 10.17182/hepdata.37718

The angular distribution π+-p at 1.0 GeV was determined on the basis of l032 events measured in a propane bubble chamber. Comparison is made with data of 820 and 900 MeV and with angular distributions π−+p at similar energies.

1 data table match query

No description provided.


Single-Pion Production in pp Collisions at 0.95-GeV/c (I)

The COSY-TOF collaboration El-Samad, S.Abd ; Bilger, R. ; Brinkmann, K. -Th. ; et al.
Eur.Phys.J.A 30 (2006) 443-453, 2006.
Inspire Record 725793 DOI 10.17182/hepdata.43429

The single-pion production reactions $pp\to d\pi^+$, $pp\to np\pi^+$ and $pp\to pp\pi^0$ were measured at a beam momentum of 0.95 GeV/c ($T_p \approx$ 400 MeV) using the short version of the COSY-TOF spectrometer. The implementation of a central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements. Thus all pion production channels were recorded with 1-4 overconstraints. The total and differential cross sections obtained are compared to previous data and theoretical calculations. Main emphasis is put on the discussion of the $pp\pi^0$ channel, where we obtain angular distributions different from previous experimental results, however, partly in good agreement with recent phenomenological and theoretical predictions. In particular we observe very large anisotropies for the $\pi^0$ angular distributions in the kinematical region of small relative proton momenta revealing there a dominance of proton spinflip transitions associated with $\pi^0$ $s$- and $d$-partial waves and emphasizing the important role of $\pi^0$ d-waves.

1 data table match query

Measured angular distribution for elastic P P scattering in the CM system normalised to the data in the SAID database (Arndt et al. PR C62,034005(2000). This measurement is made to determine the luminosity.


Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies

Albers, D. ; Bisplinghoff, J. ; Bollmann, R. ; et al.
Phys.Rev.Lett. 78 (1997) 1652-1655, 1997.
Inspire Record 454620 DOI 10.17182/hepdata.19581

Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta pp (energies Tp) from 1100 to 3300MeV/c (500 to 2500 MeV) in the angular range 35°≤Θc.m.≤90° with a detector providing ΔΘc.m.≈1.4° resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH2 fiber target, taking particular care to monitor luminosity as a function of Tp. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found.

16 data tables match query

No description provided.

No description provided.

No description provided.

More…

Hidden Strangeness in the Proton? Determination of the Real Part of the Isospin Even - Forward Scattering Amplitude of Pion Nucleon Scattering at 54.3-{MeV}

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.D 40 (1989) 3568-3581, 1989.
Inspire Record 287810 DOI 10.17182/hepdata.23079

The contradiction of the σ term of pion-nucleon scattering as deduced from the Karlsruhe-Helsinki phase shifts with the smaller value calculated by the chiral perturbation theory of QCD is well known. In an effort to clarify the discrepancy we have determined the real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering at a pion energy Tπ=54.3 MeV by measurement of the elastic scattering of positive and negative pions on protons in the Coulomb-nuclear interference region. The deduced value is in agreement with the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. The resulting large value of the σ term may be interpreted as being due to the influence of s¯s sea pairs even at large distances (small Q2) as previously suggested by the European Muon Collaboration measurement of deep-inelastic scattering of polarized muons on polarized protons.

1 data table match query

No description provided.


Determination of the Real Part of the Isospin Even Forward Scattering Amplitude of Pion Nucleon Scattering at 55-{MeV} as a Test of Low-energy Quantum Chromodynamics

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.Lett. 58 (1987) 648-650, 1987.
Inspire Record 246624 DOI 10.17182/hepdata.20153

The real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering has been determined at a pion energy of Tπ=55 MeV by measurement of the elastic scattering of positive and negative pions on protons within the Coulomb-nuclear interference region. The value confirms the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. These phases have been used to determine the σ term of pion-nucleon scattering by means of dispersion relations, resulting in a value for σ which is in contradiction with chiral perturbation theory of QCD.

1 data table match query

PI- P cross sections normalised to the Coulomb cross section taken from the Karlesruhe-Helsinki phase shift analysis (R. Koch, E. Pietarinen (NP A336(80)331).


Multiplicity of Charged Particles in 800-{GeV} $p p$ Interactions

The LEBC-MPS collaboration Ammar, R. ; Aziz, T. ; Banerjee, S. ; et al.
Phys.Lett.B 178 (1986) 124-128, 1986.
Inspire Record 231133 DOI 10.17182/hepdata.6558

Results are reported concerning the charged-particle multiplicity distribution obtained in an exposure of the high-resolution hydrogen bubble chamber LEBC to a beam of 800 GeV protons at the Fermilab MPS. This is the first time that such data have been available at this energy. The distribution of the number n ch of charged particles produced in inelastic interactions obeys KNO-scaling. The average multiplicity is 〈 n ch 〉 = 10.26±0.15. For n ch ⩾8 the data can be well fitted to a negative binomial. The difference between the overall experimental multiplicity distribution and that resulting from the latter fit is in agreement with the contribution expected from diffractive processes.

1 data table match query

No description provided.


A Study of $K^+ p$ Elastic Scattering and the Reaction $K^+ p \to K^+ p \pi^+ \pi^-$ at 70-{GeV}/$c$

The Brussels-Genoa-Mons-Nijmegen-Serpukhov-CERN collaboration Barth, M. ; Wolf, A.E. De ; Johnson, D.P. ; et al.
Z.Phys.C 16 (1982) 111, 1982.
Inspire Record 181354 DOI 10.17182/hepdata.41205

Results are presented onK+p elastic scattering and on the reactionK+p→K+pπ+π− at 70 GeV/c. For the

3 data tables match query

INTEGRATION OVER RANGE OF ABS(T) FROM 0 TO 1 GEV.

ELASTIC DIFFERENTIAL CROSS SECTION AT T=0 DERIVED FROM THE OPTICAL THEOREM.


Topological, Total and Elastic Cross-sections for $K^+ p$, $\pi^+ p$ and $p p$ Interactions at 147-{GeV}/$c$

Brick, D. ; Rudnicka, H. ; Shapiro, A.M. ; et al.
Phys.Rev.D 25 (1982) 2794, 1982.
Inspire Record 11840 DOI 10.17182/hepdata.4111

The Fermilab hybrid 30-in. bubble-chamber spectrometer was exposed to a tagged 147-GeV/c positive beam containing π+, K+, and p. A sample of 3003 K+p, 19410 pp, and 20745 π+p interactions is used to derive σn, 〈n〉, f2cc, and 〈nc〉D for each beam particle. These values are compared to values obtained at other, mostly lower, beam momenta. The overall dependence of 〈n〉 on Ea, the available center-of-mass energy, for these three reactions as well as π−p and pp interactions has been determined.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…