Topological, Total and Elastic Cross-sections for $K^+ p$, $\pi^+ p$ and $p p$ Interactions at 147-{GeV}/$c$

Brick, D. ; Rudnicka, H. ; Shapiro, A.M. ; et al.
Phys.Rev.D 25 (1982) 2794, 1982.
Inspire Record 11840 DOI 10.17182/hepdata.4111

The Fermilab hybrid 30-in. bubble-chamber spectrometer was exposed to a tagged 147-GeV/c positive beam containing π+, K+, and p. A sample of 3003 K+p, 19410 pp, and 20745 π+p interactions is used to derive σn, 〈n〉, f2cc, and 〈nc〉D for each beam particle. These values are compared to values obtained at other, mostly lower, beam momenta. The overall dependence of 〈n〉 on Ea, the available center-of-mass energy, for these three reactions as well as π−p and pp interactions has been determined.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Charged-Particle Multiplicities in 100-GeV/c anti-p p Interactions

Ansorge, R.E. ; Bust, C.P. ; Carter, J.R. ; et al.
Phys.Lett.B 59 (1975) 299-302, 1975.
Inspire Record 2603 DOI 10.17182/hepdata.27765

Results are presented on the topological cross sections obtained for antiproton-proton interactions from an exposure of the Fermilab 30-inch bubble chamber to a 100 GeV/ c negative beam enriched in p 's. The p p inelastic cross section is found to be σ inel = 34.6 ± 0.4 mb, and the average inelastic charged particle multiplicity to be 〈 n 〉 = 6.74 ± 0.05.

1 data table match query

EXPONENTIAL FIT TO ELASTIC T DISTRIBUTION TO CORRECT FOR AN APPARENT LOSS OF EVENTS AT SMALL -T.


EXCLUSIVE ANNIHILATION PROCESSES IN 8.8-GEV ANTI-P P INTERACTIONS AND COMPARISONS BETWEEN ANTI-P P NONANNIHILATIONS AND P P INTERACTIONS

Ward, D.R. ; Simmons, A.J. ; Ansorge, R.E. ; et al.
Nucl.Phys.B 172 (1980) 302, 1980.
Inspire Record 158992 DOI 10.17182/hepdata.34487

We give cross sections for annihilation and non-annihilation reactions in p p interactions at 8.8 GeV. The non-annihilation data are compared with pp data from the same experiment. We compare data on resonance production and on the impact parameter structure of the final states in p p annihilation and non-annihilation and pp interactions. We investigate the charge structure of the 2 π + 2 π − π 0 final state, and find it consistent with a simple quark model.

1 data table match query

NORMALIZED TO A TOTAL P P CROSS SECTION OF 40.0 MB.


A Comparison of the Shapes of pi+ p and p p Diffraction Peaks from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, Robert E. ; Maclay, G.J. ; et al.
Phys.Rev.Lett. 37 (1976) 548, 1976.
Inspire Record 108238 DOI 10.17182/hepdata.21073

The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.

1 data table match query

ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.


First measurement of proton proton elastic scattering at RHIC.

Bueltmann, Stephen L. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 579 (2004) 245-250, 2004.
Inspire Record 618968 DOI 10.17182/hepdata.31705

The first result of the pp2pp experiment at RHIC on elastic scattering of polarized protons at sqrt{s} = 200 GeV is reported here. The exponential slope parameter b of the diffractive peak of the elastic cross section in the t range 0.010 <= |t| <= 0.019 (GeV/c)^2 was measured to be b = 16.3 +- 1.6 (stat.) +- 0.9 (syst.) (GeV/c)^{-2} .

1 data table match query

Measured slope of the elastic cross section.


Proton-proton spin correlation measurements at 200 MeV with an internal target in a storage ring

Haeberli, W. ; Lorentz, B. ; Rathmann, F. ; et al.
Phys.Rev.C 55 (1997) 597-613, 1997.
Inspire Record 464240 DOI 10.17182/hepdata.25711

Measurements of the pp spin correlation coefficients Axx, Ayy, and Axz and analyzing power Ay for pp elastic scattering at 197.8 MeV over the angular range 4.5°–17.5° have been carried out. The statistical accuracy is approximately ±0.01 for Amn and ±0.004 for Ay, while the corresponding scale factor uncertainties are 2.4% and 1.3%, respectively. The experiment makes use of a polarized hydrogen gas target internal to a proton storage ring (IUCF Cooler) and a circulating beam of polarized protons. The target polarization (Q=0.79) is switched in sign and in direction (x,y,z) every 2 s by reversing a weak guide field (about 0.3 mT). The forward-scattered protons are detected in two sets of wire chambers and a scintillator, while recoil protons are detected in coincidence with the forward protons by silicon strip detectors placed 5 cm from the proton beam. The background rate from scattering by the walls of the target cell is (0.2±0.2)% of the good event rate. Analysis methods and comparisons with pp potential models and pp partial wave analyses are described.

1 data table match query

No description provided.


Absolute measurement of the p+p analyzing power at 183 MeV

von Przewoski, B. ; Meyer, H.O. ; Pancella, P.V. ; et al.
Phys.Rev.C 44 (1991) 44-49, 1991.
Inspire Record 327386 DOI 10.17182/hepdata.26154

The analyzing power Ay for p+p elastic scattering at θlab=8.64°±0.07° (θcms=18.1°) and at a bombarding energy of 183.1±0.4 MeV has been determined to be Ay=0.2122±0.0017. The error includes statistics, systematic uncertainties, and the uncertainty in bombarding energy and angle. This measurement represents a calibration standard for polarized beams in this energy range. The absolute scale for the measurement has been obtained by comparison with p+C elastic scattering at the same energy at an angle where Ay is very nearly unity.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////).


Scattering of $\pi^-$ Mesons in the Momentum Range 0.643-{GeV}/$c$ to 2.14-{GeV}/$c$ From a Polarized Proton Target

Cox, C.R. ; Duke, P.J. ; Heard, K.S. ; et al.
Phys.Rev. 184 (1969) 1453, 1969.
Inspire Record 18772 DOI 10.17182/hepdata.13

The asymmetry in the scattering of π− mesons by polarized protons has been measured at 50 different momenta from 0.643 to 2.14 GeV/c. Results were obtained at values of cosθ ranging from approximately +0.9 to -0.95 in the c.m. system at each incident pion momentum. The pion beam was incident on a 7.6-cm-long crystal assembly of lanthanum magnesium nitrate, in which the hydrogen in the water of crystallization was polarized by the "solid effect." The total momentum spread of the beam was 10% (full width at half-height) and data were collected simultaneously in 4 momentum channels, each with 2½% full width at half-height. A gas Čherenkov counter was used to reject incoming electrons. Scattered particles were detected in scintillation counter arrays placed within the 10-cm gap of the polarized target magnet. Encoded information from each array was stored in the memory of a PDP-5 computer connected on-line to a fast electronic logic network. The computer was programmed to classify the events according to momentum and scattering angle and subdivide them into coplanar and noncoplanar categories. The latter provided a measure of the background. The results have been expressed in the form of an expansion in terms of first associated Legendre polynomial series and compared with the predictions of recent phase-shift solutions. It is concluded that although these analyses give satisfactory predictions of the general features of the results, no one solution gives complete agreement with the data above about 1.0 GeV/c.

50 data tables match query

No description provided.

No description provided.

No description provided.

More…

First measurement of A(N) at s**(1/2) = 200-GeV in polarized proton proton elastic scattering at RHIC.

Bultmann, S. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 632 (2006) 167-172, 2006.
Inspire Record 688172 DOI 10.17182/hepdata.31570

We report on the first measurement of the single spin analyzing power (A_N) at sqrt(s)=200GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). Data points were measured in the four momentum transfer t range 0.01 < |t| < 0.03 (GeV/c)^2. Our result, averaged over the whole t-interval is about one standard deviation above the calculation, which uses interference between electromagnetic spin-flip amplitude and hadronic non-flip amplitude, the source of A_N. The difference could be explained by an additional contribution of a hadronic spin-flip amplitude to A_N.

1 data table match query

The single spin analyzing power for 3 T intervals.


Polarization Measurements in pi+ p Elastic Scattering from 0.6-GeV/c to 2.65-GeV/c

Martin, J.F. ; Sleeman, J.C. ; Brown, Robert M. ; et al.
Nucl.Phys.B 89 (1975) 253-286, 1975.
Inspire Record 90870 DOI 10.17182/hepdata.6743

This paper presents the results of a counter experiment at the Rutherford Laboratory, in which the polarization parameter in π + p elastic scattering was measured. Data were taken at 64 incident pion momenta between 0.60 and 2.65 GeV/ c . The results are found to be in generally good agreement with those of other experiments, and have substantially higher precision at many momenta.

128 data tables match query

No description provided.

No description provided.

No description provided.

More…